![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.3 | Unicode version |
Description: A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
19.3.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
19.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1447 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 19.3.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | nfri 1458 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | impbii 125 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-4 1446 |
This theorem depends on definitions: df-bi 116 df-nf 1396 |
This theorem is referenced by: 19.16 1493 19.17 1494 19.27 1499 19.28 1501 19.37-1 1610 rexxfrd 4300 |
Copyright terms: Public domain | W3C validator |