ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.3 Unicode version

Theorem 19.3 1554
Description: A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.3.1  |-  F/ x ph
Assertion
Ref Expression
19.3  |-  ( A. x ph  <->  ph )

Proof of Theorem 19.3
StepHypRef Expression
1 sp 1511 . 2  |-  ( A. x ph  ->  ph )
2 19.3.1 . . 3  |-  F/ x ph
32nfri 1519 . 2  |-  ( ph  ->  A. x ph )
41, 3impbii 126 1  |-  ( A. x ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1351   F/wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-4 1510
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  19.16  1555  19.17  1556  19.27  1561  19.28  1563  19.37-1  1674  rexxfrd  4465
  Copyright terms: Public domain W3C validator