ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.16 GIF version

Theorem 19.16 1548
Description: Theorem 19.16 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.16.1 𝑥𝜑
Assertion
Ref Expression
19.16 (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∀𝑥𝜓))

Proof of Theorem 19.16
StepHypRef Expression
1 19.16.1 . . 3 𝑥𝜑
2119.3 1547 . 2 (∀𝑥𝜑𝜑)
3 albi 1461 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
42, 3bitr3id 193 1 (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346  wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator