| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3id | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3id.1 |
|
| bitr3id.2 |
|
| Ref | Expression |
|---|---|
| bitr3id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3id.1 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | bitr3id.2 |
. 2
| |
| 4 | 2, 3 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr3g 222 imbibi 252 ianordc 904 19.16 1601 19.19 1712 cbvab 2353 necon1bbiidc 2461 rspc2gv 2919 elabgt 2944 sbceq1a 3038 sbcralt 3105 sbcrext 3106 sbccsbg 3153 sbccsb2g 3154 iunpw 4568 tfis 4672 xp11m 5163 ressn 5265 fnssresb 5431 fun11iun 5589 funimass4 5677 dffo4 5776 f1ompt 5779 fliftf 5916 resoprab2 6092 ralrnmpo 6110 rexrnmpo 6111 1stconst 6357 2ndconst 6358 dfsmo2 6423 smoiso 6438 brecop 6762 ixpsnf1o 6873 ac6sfi 7048 ismkvnex 7310 nninfwlporlemd 7327 prarloclemn 7674 axcaucvglemres 8074 reapti 8714 indstr 9776 iccneg 10173 sqap0 10815 wrdmap 11089 wrdind 11240 sqrt00 11537 minclpr 11734 fprodseq 12080 absefib 12268 efieq1re 12269 prmind2 12628 gsumval2 13416 eqgval 13746 isnzr2 14133 sincosq3sgn 15487 sincosq4sgn 15488 fsumdvdsmul 15650 lgsdinn0 15712 pw1nct 16300 iswomninnlem 16348 |
| Copyright terms: Public domain | W3C validator |