![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3id | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3id.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr3id.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr3id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3id.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | bitr3id.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitrid 192 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitr3g 222 imbibi 252 ianordc 900 19.16 1566 19.19 1677 cbvab 2317 necon1bbiidc 2425 rspc2gv 2877 elabgt 2902 sbceq1a 2996 sbcralt 3063 sbcrext 3064 sbccsbg 3110 sbccsb2g 3111 iunpw 4512 tfis 4616 xp11m 5105 ressn 5207 fnssresb 5367 fun11iun 5522 funimass4 5608 dffo4 5707 f1ompt 5710 fliftf 5843 resoprab2 6016 ralrnmpo 6034 rexrnmpo 6035 1stconst 6276 2ndconst 6277 dfsmo2 6342 smoiso 6357 brecop 6681 ixpsnf1o 6792 ac6sfi 6956 ismkvnex 7216 nninfwlporlemd 7233 prarloclemn 7561 axcaucvglemres 7961 reapti 8600 indstr 9661 iccneg 10058 sqap0 10680 wrdmap 10948 sqrt00 11187 minclpr 11383 fprodseq 11729 absefib 11917 efieq1re 11918 prmind2 12261 gsumval2 12983 eqgval 13296 isnzr2 13683 sincosq3sgn 15004 sincosq4sgn 15005 lgsdinn0 15205 pw1nct 15563 iswomninnlem 15609 |
Copyright terms: Public domain | W3C validator |