Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr3id | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3id.1 | |
bitr3id.2 |
Ref | Expression |
---|---|
bitr3id |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3id.1 | . . 3 | |
2 | 1 | bicomi 132 | . 2 |
3 | bitr3id.2 | . 2 | |
4 | 2, 3 | bitrid 192 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitr3g 222 imbibi 252 ianordc 899 19.16 1553 19.19 1664 cbvab 2299 necon1bbiidc 2406 rspc2gv 2851 elabgt 2876 sbceq1a 2970 sbcralt 3037 sbcrext 3038 sbccsbg 3084 sbccsb2g 3085 iunpw 4474 tfis 4576 xp11m 5059 ressn 5161 fnssresb 5320 fun11iun 5474 funimass4 5558 dffo4 5656 f1ompt 5659 fliftf 5790 resoprab2 5962 ralrnmpo 5979 rexrnmpo 5980 1stconst 6212 2ndconst 6213 dfsmo2 6278 smoiso 6293 brecop 6615 ixpsnf1o 6726 ac6sfi 6888 ismkvnex 7143 nninfwlporlemd 7160 prarloclemn 7473 axcaucvglemres 7873 reapti 8510 indstr 9566 iccneg 9960 sqap0 10556 sqrt00 11017 minclpr 11213 fprodseq 11559 absefib 11746 efieq1re 11747 prmind2 12087 sincosq3sgn 13829 sincosq4sgn 13830 lgsdinn0 14029 pw1nct 14322 iswomninnlem 14367 |
Copyright terms: Public domain | W3C validator |