ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.27v Unicode version

Theorem 19.27v 1899
Description: Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 3-Jun-2004.)
Assertion
Ref Expression
19.27v  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  ps ) )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.27v
StepHypRef Expression
1 ax-17 1526 . 2  |-  ( ps 
->  A. x ps )
2119.27h 1560 1  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator