![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimddv | Unicode version |
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
exlimddv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
exlimddv.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exlimddv |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | exlimddv.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | ex 115 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | exlimdv 1819 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie2 1494 ax-17 1526 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: fvmptdv2 5606 tfrlemi14d 6334 tfrexlem 6335 tfr1onlemres 6350 tfrcllemres 6363 tfrcldm 6364 erref 6555 xpdom2 6831 dom0 6838 xpen 6845 mapdom1g 6847 phplem4dom 6862 phplem4on 6867 fidceq 6869 dif1en 6879 fin0 6885 fin0or 6886 isinfinf 6897 infm 6904 en2eqpr 6907 fiuni 6977 supelti 7001 djudom 7092 difinfsn 7099 enomnilem 7136 enmkvlem 7159 enwomnilem 7167 exmidfodomrlemim 7200 exmidaclem 7207 cc2lem 7265 cc3 7267 genpml 7516 genpmu 7517 ltexprlemm 7599 ltexprlemfl 7608 ltexprlemfu 7610 suplocsr 7808 axpre-suploc 7901 eqord1 8440 nn1suc 8938 seq3f1oleml 10503 zfz1isolem1 10820 nninfdcex 11954 zsupssdc 11955 eulerth 12233 ennnfonelemim 12425 exmidunben 12427 enctlem 12433 ctiunct 12441 unct 12443 omctfn 12444 omiunct 12445 issubg2m 13049 lmff 13752 txcn 13778 suplociccreex 14105 suplociccex 14106 subctctexmid 14753 exmidsbthrlem 14773 sbthom 14777 |
Copyright terms: Public domain | W3C validator |