| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimddv | Unicode version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| exlimddv.1 |
|
| exlimddv.2 |
|
| Ref | Expression |
|---|---|
| exlimddv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddv.1 |
. 2
| |
| 2 | exlimddv.2 |
. . . 4
| |
| 3 | 2 | ex 115 |
. . 3
|
| 4 | 3 | exlimdv 1833 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: fvmptdv2 5651 tfrlemi14d 6391 tfrexlem 6392 tfr1onlemres 6407 tfrcllemres 6420 tfrcldm 6421 erref 6612 xpdom2 6890 dom0 6899 xpen 6906 mapdom1g 6908 phplem4dom 6923 phplem4on 6928 fidceq 6930 dif1en 6940 fin0 6946 fin0or 6947 isinfinf 6958 infm 6965 en2eqpr 6968 fiuni 7044 supelti 7068 djudom 7159 difinfsn 7166 enomnilem 7204 enmkvlem 7227 enwomnilem 7235 exmidfodomrlemim 7268 exmidaclem 7275 cc2lem 7333 cc3 7335 genpml 7584 genpmu 7585 ltexprlemm 7667 ltexprlemfl 7676 ltexprlemfu 7678 suplocsr 7876 axpre-suploc 7969 eqord1 8510 nn1suc 9009 nninfdcex 10327 zsupssdc 10328 seq3f1oleml 10608 zfz1isolem1 10932 eulerth 12401 4sqlem14 12573 4sqlem17 12576 4sqlem18 12577 ennnfonelemim 12641 exmidunben 12643 enctlem 12649 ctiunct 12657 unct 12659 omctfn 12660 omiunct 12661 relelbasov 12740 issubg2m 13319 lmff 14485 txcn 14511 suplociccreex 14860 suplociccex 14861 1dom1el 15637 subctctexmid 15645 exmidsbthrlem 15666 sbthom 15670 |
| Copyright terms: Public domain | W3C validator |