| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimddv | Unicode version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| exlimddv.1 |
|
| exlimddv.2 |
|
| Ref | Expression |
|---|---|
| exlimddv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddv.1 |
. 2
| |
| 2 | exlimddv.2 |
. . . 4
| |
| 3 | 2 | ex 115 |
. . 3
|
| 4 | 3 | exlimdv 1842 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie2 1517 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: fvmptdv2 5669 tfrlemi14d 6419 tfrexlem 6420 tfr1onlemres 6435 tfrcllemres 6448 tfrcldm 6449 erref 6640 en2 6912 xpdom2 6926 dom0 6935 xpen 6942 mapdom1g 6944 phplem4dom 6959 phplem4on 6964 fidceq 6966 dif1en 6976 fin0 6982 fin0or 6983 isinfinf 6994 infm 7001 en2eqpr 7004 fiuni 7080 supelti 7104 djudom 7195 difinfsn 7202 enomnilem 7240 enmkvlem 7263 enwomnilem 7271 exmidfodomrlemim 7309 exmidaclem 7320 cc2lem 7378 cc3 7380 genpml 7630 genpmu 7631 ltexprlemm 7713 ltexprlemfl 7722 ltexprlemfu 7724 suplocsr 7922 axpre-suploc 8015 eqord1 8556 nn1suc 9055 nninfdcex 10380 zsupssdc 10381 seq3f1oleml 10661 zfz1isolem1 10985 eulerth 12555 4sqlem14 12727 4sqlem17 12730 4sqlem18 12731 ennnfonelemim 12795 exmidunben 12797 enctlem 12803 ctiunct 12811 unct 12813 omctfn 12814 omiunct 12815 relelbasov 12894 issubg2m 13525 lmff 14721 txcn 14747 suplociccreex 15096 suplociccex 15097 1dom1el 15927 subctctexmid 15937 exmidsbthrlem 15961 sbthom 15965 |
| Copyright terms: Public domain | W3C validator |