| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimddv | Unicode version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| exlimddv.1 |
|
| exlimddv.2 |
|
| Ref | Expression |
|---|---|
| exlimddv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddv.1 |
. 2
| |
| 2 | exlimddv.2 |
. . . 4
| |
| 3 | 2 | ex 115 |
. . 3
|
| 4 | 3 | exlimdv 1833 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: fvmptdv2 5654 tfrlemi14d 6400 tfrexlem 6401 tfr1onlemres 6416 tfrcllemres 6429 tfrcldm 6430 erref 6621 xpdom2 6899 dom0 6908 xpen 6915 mapdom1g 6917 phplem4dom 6932 phplem4on 6937 fidceq 6939 dif1en 6949 fin0 6955 fin0or 6956 isinfinf 6967 infm 6974 en2eqpr 6977 fiuni 7053 supelti 7077 djudom 7168 difinfsn 7175 enomnilem 7213 enmkvlem 7236 enwomnilem 7244 exmidfodomrlemim 7280 exmidaclem 7291 cc2lem 7349 cc3 7351 genpml 7601 genpmu 7602 ltexprlemm 7684 ltexprlemfl 7693 ltexprlemfu 7695 suplocsr 7893 axpre-suploc 7986 eqord1 8527 nn1suc 9026 nninfdcex 10344 zsupssdc 10345 seq3f1oleml 10625 zfz1isolem1 10949 eulerth 12426 4sqlem14 12598 4sqlem17 12601 4sqlem18 12602 ennnfonelemim 12666 exmidunben 12668 enctlem 12674 ctiunct 12682 unct 12684 omctfn 12685 omiunct 12686 relelbasov 12765 issubg2m 13395 lmff 14569 txcn 14595 suplociccreex 14944 suplociccex 14945 1dom1el 15721 subctctexmid 15731 exmidsbthrlem 15753 sbthom 15757 |
| Copyright terms: Public domain | W3C validator |