| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimddv | Unicode version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| exlimddv.1 |
|
| exlimddv.2 |
|
| Ref | Expression |
|---|---|
| exlimddv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddv.1 |
. 2
| |
| 2 | exlimddv.2 |
. . . 4
| |
| 3 | 2 | ex 115 |
. . 3
|
| 4 | 3 | exlimdv 1865 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie2 1540 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: fvmptdv2 5724 tfrlemi14d 6479 tfrexlem 6480 tfr1onlemres 6495 tfrcllemres 6508 tfrcldm 6509 erref 6700 en2 6973 en2m 6974 xpdom2 6990 dom0 6999 xpen 7006 mapdom1g 7008 phplem4dom 7023 phplem4on 7029 fidceq 7031 dif1en 7041 fin0 7047 fin0or 7048 isinfinf 7059 infm 7066 en2eqpr 7069 fiuni 7145 supelti 7169 djudom 7260 difinfsn 7267 enomnilem 7305 enmkvlem 7328 enwomnilem 7336 exmidfodomrlemim 7379 exmidaclem 7390 cc2lem 7452 cc3 7454 genpml 7704 genpmu 7705 ltexprlemm 7787 ltexprlemfl 7796 ltexprlemfu 7798 suplocsr 7996 axpre-suploc 8089 eqord1 8630 nn1suc 9129 nninfdcex 10457 zsupssdc 10458 seq3f1oleml 10738 zfz1isolem1 11062 eulerth 12755 4sqlem14 12927 4sqlem17 12930 4sqlem18 12931 ennnfonelemim 12995 exmidunben 12997 enctlem 13003 ctiunct 13011 unct 13013 omctfn 13014 omiunct 13015 relelbasov 13095 issubg2m 13726 lmff 14923 txcn 14949 suplociccreex 15298 suplociccex 15299 wlkvtxiedg 16056 wlkvtxiedgg 16057 1dom1el 16354 subctctexmid 16366 exmidsbthrlem 16390 sbthom 16394 |
| Copyright terms: Public domain | W3C validator |