| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimddv | Unicode version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| exlimddv.1 |
|
| exlimddv.2 |
|
| Ref | Expression |
|---|---|
| exlimddv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddv.1 |
. 2
| |
| 2 | exlimddv.2 |
. . . 4
| |
| 3 | 2 | ex 115 |
. . 3
|
| 4 | 3 | exlimdv 1843 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie2 1518 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: fvmptdv2 5692 tfrlemi14d 6442 tfrexlem 6443 tfr1onlemres 6458 tfrcllemres 6471 tfrcldm 6472 erref 6663 en2 6936 en2m 6937 xpdom2 6951 dom0 6960 xpen 6967 mapdom1g 6969 phplem4dom 6984 phplem4on 6990 fidceq 6992 dif1en 7002 fin0 7008 fin0or 7009 isinfinf 7020 infm 7027 en2eqpr 7030 fiuni 7106 supelti 7130 djudom 7221 difinfsn 7228 enomnilem 7266 enmkvlem 7289 enwomnilem 7297 exmidfodomrlemim 7340 exmidaclem 7351 cc2lem 7413 cc3 7415 genpml 7665 genpmu 7666 ltexprlemm 7748 ltexprlemfl 7757 ltexprlemfu 7759 suplocsr 7957 axpre-suploc 8050 eqord1 8591 nn1suc 9090 nninfdcex 10417 zsupssdc 10418 seq3f1oleml 10698 zfz1isolem1 11022 eulerth 12670 4sqlem14 12842 4sqlem17 12845 4sqlem18 12846 ennnfonelemim 12910 exmidunben 12912 enctlem 12918 ctiunct 12926 unct 12928 omctfn 12929 omiunct 12930 relelbasov 13009 issubg2m 13640 lmff 14836 txcn 14862 suplociccreex 15211 suplociccex 15212 1dom1el 16126 subctctexmid 16139 exmidsbthrlem 16163 sbthom 16167 |
| Copyright terms: Public domain | W3C validator |