| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimddv | Unicode version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| exlimddv.1 |
|
| exlimddv.2 |
|
| Ref | Expression |
|---|---|
| exlimddv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddv.1 |
. 2
| |
| 2 | exlimddv.2 |
. . . 4
| |
| 3 | 2 | ex 115 |
. . 3
|
| 4 | 3 | exlimdv 1842 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie2 1517 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: fvmptdv2 5671 tfrlemi14d 6421 tfrexlem 6422 tfr1onlemres 6437 tfrcllemres 6450 tfrcldm 6451 erref 6642 en2 6914 xpdom2 6928 dom0 6937 xpen 6944 mapdom1g 6946 phplem4dom 6961 phplem4on 6966 fidceq 6968 dif1en 6978 fin0 6984 fin0or 6985 isinfinf 6996 infm 7003 en2eqpr 7006 fiuni 7082 supelti 7106 djudom 7197 difinfsn 7204 enomnilem 7242 enmkvlem 7265 enwomnilem 7273 exmidfodomrlemim 7311 exmidaclem 7322 cc2lem 7380 cc3 7382 genpml 7632 genpmu 7633 ltexprlemm 7715 ltexprlemfl 7724 ltexprlemfu 7726 suplocsr 7924 axpre-suploc 8017 eqord1 8558 nn1suc 9057 nninfdcex 10382 zsupssdc 10383 seq3f1oleml 10663 zfz1isolem1 10987 eulerth 12588 4sqlem14 12760 4sqlem17 12763 4sqlem18 12764 ennnfonelemim 12828 exmidunben 12830 enctlem 12836 ctiunct 12844 unct 12846 omctfn 12847 omiunct 12848 relelbasov 12927 issubg2m 13558 lmff 14754 txcn 14780 suplociccreex 15129 suplociccex 15130 1dom1el 15964 subctctexmid 15974 exmidsbthrlem 15998 sbthom 16002 |
| Copyright terms: Public domain | W3C validator |