ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.27v GIF version

Theorem 19.27v 1893
Description: Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 3-Jun-2004.)
Assertion
Ref Expression
19.27v (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.27v
StepHypRef Expression
1 ax-17 1520 . 2 (𝜓 → ∀𝑥𝜓)
2119.27h 1554 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1441  ax-gen 1443  ax-4 1504  ax-17 1520
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator