Theorem List for Intuitionistic Logic Explorer - 1801-1900 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
1.4.3 More theorems related to ax-11 and
substitution
|
|
Theorem | albidv 1801* |
Formula-building rule for universal quantifier (deduction form).
(Contributed by NM, 5-Aug-1993.)
|
|
|
Theorem | exbidv 1802* |
Formula-building rule for existential quantifier (deduction form).
(Contributed by NM, 5-Aug-1993.)
|
|
|
Theorem | ax11b 1803 |
A bidirectional version of ax-11o 1800. (Contributed by NM,
30-Jun-2006.)
|
|
|
Theorem | ax11v 1804* |
This is a version of ax-11o 1800 when the variables are distinct. Axiom
(C8) of [Monk2] p. 105. (Contributed by
NM, 5-Aug-1993.) (Revised by
Jim Kingdon, 15-Dec-2017.)
|
|
|
Theorem | ax11ev 1805* |
Analogue to ax11v 1804 for existential quantification. (Contributed
by Jim
Kingdon, 9-Jan-2018.)
|
|
|
Theorem | equs5 1806 |
Lemma used in proofs of substitution properties. (Contributed by NM,
5-Aug-1993.)
|
|
|
Theorem | equs5or 1807 |
Lemma used in proofs of substitution properties. Like equs5 1806 but, in
intuitionistic logic, replacing negation and implication with
disjunction makes this a stronger result. (Contributed by Jim Kingdon,
2-Feb-2018.)
|
|
|
Theorem | sb3 1808 |
One direction of a simplified definition of substitution when variables
are distinct. (Contributed by NM, 5-Aug-1993.)
|
|
|
Theorem | sb4 1809 |
One direction of a simplified definition of substitution when variables
are distinct. (Contributed by NM, 5-Aug-1993.)
|
|
|
Theorem | sb4or 1810 |
One direction of a simplified definition of substitution when variables
are distinct. Similar to sb4 1809 but stronger in intuitionistic logic.
(Contributed by Jim Kingdon, 2-Feb-2018.)
|
|
|
Theorem | sb4b 1811 |
Simplified definition of substitution when variables are distinct.
(Contributed by NM, 27-May-1997.)
|
|
|
Theorem | sb4bor 1812 |
Simplified definition of substitution when variables are distinct,
expressed via disjunction. (Contributed by Jim Kingdon, 18-Mar-2018.)
|
|
|
Theorem | hbsb2 1813 |
Bound-variable hypothesis builder for substitution. (Contributed by NM,
5-Aug-1993.)
|
|
|
Theorem | nfsb2or 1814 |
Bound-variable hypothesis builder for substitution. Similar to hbsb2 1813
but in intuitionistic logic a disjunction is stronger than an implication.
(Contributed by Jim Kingdon, 2-Feb-2018.)
|
|
|
Theorem | sbequilem 1815 |
Propositional logic lemma used in the sbequi 1816 proof. (Contributed by
Jim Kingdon, 1-Feb-2018.)
|
|
|
Theorem | sbequi 1816 |
An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
(Proof modified by Jim Kingdon, 1-Feb-2018.)
|
|
|
Theorem | sbequ 1817 |
An equality theorem for substitution. Used in proof of Theorem 9.7 in
[Megill] p. 449 (p. 16 of the preprint).
(Contributed by NM,
5-Aug-1993.)
|
|
|
Theorem | drsb2 1818 |
Formula-building lemma for use with the Distinctor Reduction Theorem.
Part of Theorem 9.4 of [Megill] p. 448 (p.
16 of preprint). (Contributed
by NM, 27-Feb-2005.)
|
|
|
Theorem | spsbe 1819 |
A specialization theorem, mostly the same as Theorem 19.8 of [Margaris]
p. 89. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon,
29-Dec-2017.)
|
|
|
Theorem | spsbim 1820 |
Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof
rewritten by Jim Kingdon, 21-Jan-2018.)
|
|
|
Theorem | spsbbi 1821 |
Specialization of biconditional. (Contributed by NM, 5-Aug-1993.) (Proof
rewritten by Jim Kingdon, 21-Jan-2018.)
|
|
|
Theorem | sbbidh 1822 |
Deduction substituting both sides of a biconditional. New proofs should
use sbbid 1823 instead. (Contributed by NM, 5-Aug-1993.)
(New usage is discouraged.)
|
|
|
Theorem | sbbid 1823 |
Deduction substituting both sides of a biconditional. (Contributed by
NM, 30-Jun-1993.)
|
|
|
Theorem | sbequ8 1824 |
Elimination of equality from antecedent after substitution. (Contributed
by NM, 5-Aug-1993.) (Proof revised by Jim Kingdon, 20-Jan-2018.)
|
|
|
Theorem | sbft 1825 |
Substitution has no effect on a non-free variable. (Contributed by NM,
30-May-2009.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened
by Wolf Lammen, 3-May-2018.)
|
|
|
Theorem | sbid2h 1826 |
An identity law for substitution. (Contributed by NM, 5-Aug-1993.)
|
|
|
Theorem | sbid2 1827 |
An identity law for substitution. (Contributed by NM, 5-Aug-1993.)
(Revised by Mario Carneiro, 6-Oct-2016.)
|
|
|
Theorem | sbidm 1828 |
An idempotent law for substitution. (Contributed by NM, 30-Jun-1994.)
(Proof rewritten by Jim Kingdon, 21-Jan-2018.)
|
|
|
Theorem | sb5rf 1829 |
Reversed substitution. (Contributed by NM, 3-Feb-2005.) (Proof
shortened by Andrew Salmon, 25-May-2011.)
|
|
|
Theorem | sb6rf 1830 |
Reversed substitution. (Contributed by NM, 5-Aug-1993.) (Proof
shortened by Andrew Salmon, 25-May-2011.)
|
|
|
Theorem | sb8h 1831 |
Substitution of variable in universal quantifier. (Contributed by NM,
5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof
shortened by Jim Kingdon, 15-Jan-2018.)
|
|
|
Theorem | sb8eh 1832 |
Substitution of variable in existential quantifier. (Contributed by NM,
12-Aug-1993.) (Proof rewritten by Jim Kingdon, 15-Jan-2018.)
|
|
|
Theorem | sb8 1833 |
Substitution of variable in universal quantifier. (Contributed by NM,
5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened
by Jim Kingdon, 15-Jan-2018.)
|
|
|
Theorem | sb8e 1834 |
Substitution of variable in existential quantifier. (Contributed by NM,
12-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof
shortened by Jim Kingdon, 15-Jan-2018.)
|
|
|
1.4.4 Predicate calculus with distinct variables
(cont.)
|
|
Theorem | ax16i 1835* |
Inference with ax-16 1791 as its conclusion, that does not require
ax-10 1482, ax-11 1483, or ax12 1489
for its proof. The hypotheses may be
eliminable without one or more of these axioms in special cases.
(Contributed by NM, 20-May-2008.)
|
|
|
Theorem | ax16ALT 1836* |
Version of ax16 1790 that does not require ax-10 1482 or ax12 1489 for its proof.
(Contributed by NM, 17-May-2008.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
|
|
Theorem | spv 1837* |
Specialization, using implicit substitition. (Contributed by NM,
30-Aug-1993.)
|
|
|
Theorem | spimev 1838* |
Distinct-variable version of spime 1718. (Contributed by NM,
5-Aug-1993.)
|
|
|
Theorem | speiv 1839* |
Inference from existential specialization, using implicit substitition.
(Contributed by NM, 19-Aug-1993.)
|
|
|
Theorem | equvin 1840* |
A variable introduction law for equality. Lemma 15 of [Monk2] p. 109.
(Contributed by NM, 5-Aug-1993.)
|
|
|
Theorem | a16g 1841* |
A generalization of Axiom ax-16 1791. (Contributed by NM, 5-Aug-1993.)
(Proof shortened by Andrew Salmon, 25-May-2011.)
|
|
|
Theorem | a16gb 1842* |
A generalization of Axiom ax-16 1791. (Contributed by NM, 5-Aug-1993.)
|
|
|
Theorem | a16nf 1843* |
If there is only one element in the universe, then everything satisfies
.
(Contributed by Mario Carneiro, 7-Oct-2016.)
|
|
|
Theorem | 2albidv 1844* |
Formula-building rule for 2 existential quantifiers (deduction form).
(Contributed by NM, 4-Mar-1997.)
|
|
|
Theorem | 2exbidv 1845* |
Formula-building rule for 2 existential quantifiers (deduction form).
(Contributed by NM, 1-May-1995.)
|
|
|
Theorem | 3exbidv 1846* |
Formula-building rule for 3 existential quantifiers (deduction form).
(Contributed by NM, 1-May-1995.)
|
|
|
Theorem | 4exbidv 1847* |
Formula-building rule for 4 existential quantifiers (deduction form).
(Contributed by NM, 3-Aug-1995.)
|
|
|
Theorem | 19.9v 1848* |
Special case of Theorem 19.9 of [Margaris] p.
89. (Contributed by NM,
28-May-1995.) (Revised by NM, 21-May-2007.)
|
|
|
Theorem | exlimdd 1849 |
Existential elimination rule of natural deduction. (Contributed by
Mario Carneiro, 9-Feb-2017.)
|
|
|
Theorem | 19.21v 1850* |
Special case of Theorem 19.21 of [Margaris] p.
90. Notational
convention: We sometimes suffix with "v" the label of a
theorem
eliminating a hypothesis such as
in
19.21 1560 via
the use of distinct variable conditions combined with ax-17 1503.
Conversely, we sometimes suffix with "f" the label of a
theorem
introducing such a hypothesis to eliminate the need for the distinct
variable condition; e.g., euf 2008 derived from df-eu 2006. The "f" stands
for "not free in" which is less restrictive than "does
not occur in".
(Contributed by NM, 5-Aug-1993.)
|
|
|
Theorem | alrimiv 1851* |
Inference from Theorem 19.21 of [Margaris] p.
90. (Contributed by NM,
5-Aug-1993.)
|
|
|
Theorem | alrimivv 1852* |
Inference from Theorem 19.21 of [Margaris] p.
90. (Contributed by NM,
31-Jul-1995.)
|
|
|
Theorem | alrimdv 1853* |
Deduction from Theorem 19.21 of [Margaris] p.
90. (Contributed by NM,
10-Feb-1997.)
|
|
|
Theorem | nfdv 1854* |
Apply the definition of not-free in a context. (Contributed by Mario
Carneiro, 11-Aug-2016.)
|
|
|
Theorem | 2ax17 1855* |
Quantification of two variables over a formula in which they do not
occur. (Contributed by Alan Sare, 12-Apr-2011.)
|
|
|
Theorem | alimdv 1856* |
Deduction from Theorem 19.20 of [Margaris] p.
90. (Contributed by NM,
3-Apr-1994.)
|
|
|
Theorem | eximdv 1857* |
Deduction from Theorem 19.22 of [Margaris] p.
90. (Contributed by NM,
27-Apr-1994.)
|
|
|
Theorem | 2alimdv 1858* |
Deduction from Theorem 19.22 of [Margaris] p.
90. (Contributed by NM,
27-Apr-2004.)
|
|
|
Theorem | 2eximdv 1859* |
Deduction from Theorem 19.22 of [Margaris] p.
90. (Contributed by NM,
3-Aug-1995.)
|
|
|
Theorem | 19.23v 1860* |
Special case of Theorem 19.23 of [Margaris] p.
90. (Contributed by NM,
28-Jun-1998.)
|
|
|
Theorem | 19.23vv 1861* |
Theorem 19.23 of [Margaris] p. 90 extended to
two variables.
(Contributed by NM, 10-Aug-2004.)
|
|
|
Theorem | sb56 1862* |
Two equivalent ways of expressing the proper substitution of for
in , when and are distinct. Theorem 6.2 of
[Quine] p. 40. The proof does not involve
df-sb 1740. (Contributed by
NM, 14-Apr-2008.)
|
|
|
Theorem | sb6 1863* |
Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40.
Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM,
18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
|
|
|
Theorem | sb5 1864* |
Equivalence for substitution. Similar to Theorem 6.1 of [Quine] p. 40.
(Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
|
|
|
Theorem | sbnv 1865* |
Version of sbn 1929 where and
are distinct. (Contributed by
Jim Kingdon, 18-Dec-2017.)
|
|
|
Theorem | sbanv 1866* |
Version of sban 1932 where and
are distinct. (Contributed by
Jim Kingdon, 24-Dec-2017.)
|
|
|
Theorem | sborv 1867* |
Version of sbor 1931 where and
are distinct. (Contributed by
Jim Kingdon, 3-Feb-2018.)
|
|
|
Theorem | sbi1v 1868* |
Forward direction of sbimv 1870. (Contributed by Jim Kingdon,
25-Dec-2017.)
|
|
|
Theorem | sbi2v 1869* |
Reverse direction of sbimv 1870. (Contributed by Jim Kingdon,
18-Jan-2018.)
|
|
|
Theorem | sbimv 1870* |
Intuitionistic proof of sbim 1930 where and
are distinct.
(Contributed by Jim Kingdon, 18-Jan-2018.)
|
|
|
Theorem | sblimv 1871* |
Version of sblim 1934 where and
are distinct. (Contributed by
Jim Kingdon, 19-Jan-2018.)
|
|
|
Theorem | pm11.53 1872* |
Theorem *11.53 in [WhiteheadRussell]
p. 164. (Contributed by Andrew
Salmon, 24-May-2011.)
|
|
|
Theorem | exlimivv 1873* |
Inference from Theorem 19.23 of [Margaris] p.
90. (Contributed by NM,
1-Aug-1995.)
|
|
|
Theorem | exlimdvv 1874* |
Deduction from Theorem 19.23 of [Margaris] p.
90. (Contributed by NM,
31-Jul-1995.)
|
|
|
Theorem | exlimddv 1875* |
Existential elimination rule of natural deduction. (Contributed by
Mario Carneiro, 15-Jun-2016.)
|
|
|
Theorem | 19.27v 1876* |
Theorem 19.27 of [Margaris] p. 90.
(Contributed by NM, 3-Jun-2004.)
|
|
|
Theorem | 19.28v 1877* |
Theorem 19.28 of [Margaris] p. 90.
(Contributed by NM, 25-Mar-2004.)
|
|
|
Theorem | 19.36aiv 1878* |
Inference from Theorem 19.36 of [Margaris] p.
90. (Contributed by NM,
5-Aug-1993.)
|
|
|
Theorem | 19.41v 1879* |
Special case of Theorem 19.41 of [Margaris] p.
90. (Contributed by NM,
5-Aug-1993.)
|
|
|
Theorem | 19.41vv 1880* |
Theorem 19.41 of [Margaris] p. 90 with 2
quantifiers. (Contributed by
NM, 30-Apr-1995.)
|
|
|
Theorem | 19.41vvv 1881* |
Theorem 19.41 of [Margaris] p. 90 with 3
quantifiers. (Contributed by
NM, 30-Apr-1995.)
|
|
|
Theorem | 19.41vvvv 1882* |
Theorem 19.41 of [Margaris] p. 90 with 4
quantifiers. (Contributed by
FL, 14-Jul-2007.)
|
|
|
Theorem | 19.42v 1883* |
Special case of Theorem 19.42 of [Margaris] p.
90. (Contributed by NM,
5-Aug-1993.)
|
|
|
Theorem | spvv 1884* |
Version of spv 1837 with a disjoint variable condition.
(Contributed by
BJ, 31-May-2019.)
|
|
|
Theorem | chvarvv 1885* |
Version of chvarv 1914 with a disjoint variable condition.
(Contributed by
BJ, 31-May-2019.)
|
|
|
Theorem | exdistr 1886* |
Distribution of existential quantifiers. (Contributed by NM,
9-Mar-1995.)
|
|
|
Theorem | exdistrv 1887* |
Distribute a pair of existential quantifiers (over disjoint variables)
over a conjunction. Combination of 19.41v 1879 and 19.42v 1883. For a
version with fewer disjoint variable conditions but requiring more
axioms, see eeanv 1909. (Contributed by BJ, 30-Sep-2022.)
|
|
|
Theorem | 19.42vv 1888* |
Theorem 19.42 of [Margaris] p. 90 with 2
quantifiers. (Contributed by
NM, 16-Mar-1995.)
|
|
|
Theorem | 19.42vvv 1889* |
Theorem 19.42 of [Margaris] p. 90 with 3
quantifiers. (Contributed by
NM, 21-Sep-2011.)
|
|
|
Theorem | 19.42vvvv 1890* |
Theorem 19.42 of [Margaris] p. 90 with 4
quantifiers. (Contributed by
Jim Kingdon, 23-Nov-2019.)
|
|
|
Theorem | exdistr2 1891* |
Distribution of existential quantifiers. (Contributed by NM,
17-Mar-1995.)
|
|
|
Theorem | 3exdistr 1892* |
Distribution of existential quantifiers. (Contributed by NM,
9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
|
|
|
Theorem | 4exdistr 1893* |
Distribution of existential quantifiers. (Contributed by NM,
9-Mar-1995.)
|
|
|
Theorem | cbvalv 1894* |
Rule used to change bound variables, using implicit substitition.
(Contributed by NM, 5-Aug-1993.)
|
|
|
Theorem | cbvexv 1895* |
Rule used to change bound variables, using implicit substitition.
(Contributed by NM, 5-Aug-1993.)
|
|
|
Theorem | cbvalvw 1896* |
Change bound variable. See cbvalv 1894 for a version with fewer disjoint
variable conditions. (Contributed by NM, 9-Apr-2017.) Avoid ax-7 1425.
(Revised by Gino Giotto, 25-Aug-2024.)
|
|
|
Theorem | cbvexvw 1897* |
Change bound variable. See cbvexv 1895 for a version with fewer disjoint
variable conditions. (Contributed by NM, 19-Apr-2017.) Avoid ax-7 1425.
(Revised by Gino Giotto, 25-Aug-2024.)
|
|
|
Theorem | cbval2 1898* |
Rule used to change bound variables, using implicit substitution.
(Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro,
6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Apr-2018.)
|
|
|
Theorem | cbvex2 1899* |
Rule used to change bound variables, using implicit substitution.
(Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro,
6-Oct-2016.)
|
|
|
Theorem | cbval2v 1900* |
Rule used to change bound variables, using implicit substitution.
(Contributed by NM, 4-Feb-2005.)
|
|