ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.28h Unicode version

Theorem 19.28h 1555
Description: Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.28h.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
19.28h  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )

Proof of Theorem 19.28h
StepHypRef Expression
1 19.26 1474 . 2  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )
2 19.28h.1 . . . 4  |-  ( ph  ->  A. x ph )
3219.3h 1546 . . 3  |-  ( A. x ph  <->  ph )
43anbi1i 455 . 2  |-  ( ( A. x ph  /\  A. x ps )  <->  ( ph  /\ 
A. x ps )
)
51, 4bitri 183 1  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nfan1  1557  aaanh  1579  exan  1686  19.28v  1893
  Copyright terms: Public domain W3C validator