ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.26 Unicode version

Theorem 19.26 1495
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( (
ph  /\  ps )  ->  ph )
21alimi 1469 . . 3  |-  ( A. x ( ph  /\  ps )  ->  A. x ph )
3 simpr 110 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
43alimi 1469 . . 3  |-  ( A. x ( ph  /\  ps )  ->  A. x ps )
52, 4jca 306 . 2  |-  ( A. x ( ph  /\  ps )  ->  ( A. x ph  /\  A. x ps ) )
6 id 19 . . 3  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ps ) )
76alanimi 1473 . 2  |-  ( ( A. x ph  /\  A. x ps )  ->  A. x ( ph  /\  ps ) )
85, 7impbii 126 1  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.26-2  1496  19.26-3an  1497  albiim  1501  2albiim  1502  hband  1503  hban  1561  19.27h  1574  19.27  1575  19.28h  1576  19.28  1577  nford  1581  nfand  1582  equsexd  1743  equveli  1773  sbanv  1904  2eu4  2138  bm1.1  2181  r19.26m  2628  unss  3337  ralunb  3344  ssin  3385  intun  3905  intpr  3906  eqrelrel  4764  relop  4816  eqoprab2b  5980  dfer2  6593  omniwomnimkv  7233
  Copyright terms: Public domain W3C validator