ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.26 Unicode version

Theorem 19.26 1504
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( (
ph  /\  ps )  ->  ph )
21alimi 1478 . . 3  |-  ( A. x ( ph  /\  ps )  ->  A. x ph )
3 simpr 110 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
43alimi 1478 . . 3  |-  ( A. x ( ph  /\  ps )  ->  A. x ps )
52, 4jca 306 . 2  |-  ( A. x ( ph  /\  ps )  ->  ( A. x ph  /\  A. x ps ) )
6 id 19 . . 3  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ps ) )
76alanimi 1482 . 2  |-  ( ( A. x ph  /\  A. x ps )  ->  A. x ( ph  /\  ps ) )
85, 7impbii 126 1  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.26-2  1505  19.26-3an  1506  albiim  1510  2albiim  1511  hband  1512  hban  1570  19.27h  1583  19.27  1584  19.28h  1585  19.28  1586  nford  1590  nfand  1591  equsexd  1752  equveli  1782  sbanv  1913  2eu4  2147  bm1.1  2190  r19.26m  2637  unss  3347  ralunb  3354  ssin  3395  intun  3916  intpr  3917  eqrelrel  4776  relop  4828  eqoprab2b  6003  dfer2  6621  omniwomnimkv  7269
  Copyright terms: Public domain W3C validator