ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.26 Unicode version

Theorem 19.26 1440
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( (
ph  /\  ps )  ->  ph )
21alimi 1414 . . 3  |-  ( A. x ( ph  /\  ps )  ->  A. x ph )
3 simpr 109 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
43alimi 1414 . . 3  |-  ( A. x ( ph  /\  ps )  ->  A. x ps )
52, 4jca 302 . 2  |-  ( A. x ( ph  /\  ps )  ->  ( A. x ph  /\  A. x ps ) )
6 id 19 . . 3  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ps ) )
76alanimi 1418 . 2  |-  ( ( A. x ph  /\  A. x ps )  ->  A. x ( ph  /\  ps ) )
85, 7impbii 125 1  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.26-2  1441  19.26-3an  1442  albiim  1446  2albiim  1447  hband  1448  hban  1509  19.27h  1522  19.27  1523  19.28h  1524  19.28  1525  nford  1529  nfand  1530  equsexd  1690  equveli  1715  sbanv  1843  2eu4  2068  bm1.1  2100  r19.26m  2537  unss  3216  ralunb  3223  ssin  3264  intun  3768  intpr  3769  eqrelrel  4600  relop  4649  eqoprab2b  5783  dfer2  6384
  Copyright terms: Public domain W3C validator