ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.26 Unicode version

Theorem 19.26 1505
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( (
ph  /\  ps )  ->  ph )
21alimi 1479 . . 3  |-  ( A. x ( ph  /\  ps )  ->  A. x ph )
3 simpr 110 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
43alimi 1479 . . 3  |-  ( A. x ( ph  /\  ps )  ->  A. x ps )
52, 4jca 306 . 2  |-  ( A. x ( ph  /\  ps )  ->  ( A. x ph  /\  A. x ps ) )
6 id 19 . . 3  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ps ) )
76alanimi 1483 . 2  |-  ( ( A. x ph  /\  A. x ps )  ->  A. x ( ph  /\  ps ) )
85, 7impbii 126 1  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.26-2  1506  19.26-3an  1507  albiim  1511  2albiim  1512  hband  1513  hban  1571  19.27h  1584  19.27  1585  19.28h  1586  19.28  1587  nford  1591  nfand  1592  equsexd  1753  equveli  1783  sbanv  1914  2eu4  2149  bm1.1  2192  r19.26m  2639  unss  3355  ralunb  3362  ssin  3403  intun  3930  intpr  3931  eqrelrel  4794  relop  4846  eqoprab2b  6026  dfer2  6644  omniwomnimkv  7295
  Copyright terms: Public domain W3C validator