ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.26 Unicode version

Theorem 19.26 1469
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
19.26  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )

Proof of Theorem 19.26
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( (
ph  /\  ps )  ->  ph )
21alimi 1443 . . 3  |-  ( A. x ( ph  /\  ps )  ->  A. x ph )
3 simpr 109 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
43alimi 1443 . . 3  |-  ( A. x ( ph  /\  ps )  ->  A. x ps )
52, 4jca 304 . 2  |-  ( A. x ( ph  /\  ps )  ->  ( A. x ph  /\  A. x ps ) )
6 id 19 . . 3  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ps ) )
76alanimi 1447 . 2  |-  ( ( A. x ph  /\  A. x ps )  ->  A. x ( ph  /\  ps ) )
85, 7impbii 125 1  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.26-2  1470  19.26-3an  1471  albiim  1475  2albiim  1476  hband  1477  hban  1535  19.27h  1548  19.27  1549  19.28h  1550  19.28  1551  nford  1555  nfand  1556  equsexd  1717  equveli  1747  sbanv  1877  2eu4  2107  bm1.1  2150  r19.26m  2597  unss  3296  ralunb  3303  ssin  3344  intun  3855  intpr  3856  eqrelrel  4705  relop  4754  eqoprab2b  5900  dfer2  6502  omniwomnimkv  7131
  Copyright terms: Public domain W3C validator