ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aaanh Unicode version

Theorem aaanh 1608
Description: Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.)
Hypotheses
Ref Expression
aaanh.1  |-  ( ph  ->  A. y ph )
aaanh.2  |-  ( ps 
->  A. x ps )
Assertion
Ref Expression
aaanh  |-  ( A. x A. y ( ph  /\ 
ps )  <->  ( A. x ph  /\  A. y ps ) )

Proof of Theorem aaanh
StepHypRef Expression
1 aaanh.1 . . . 4  |-  ( ph  ->  A. y ph )
2119.28h 1584 . . 3  |-  ( A. y ( ph  /\  ps )  <->  ( ph  /\  A. y ps ) )
32albii 1492 . 2  |-  ( A. x A. y ( ph  /\ 
ps )  <->  A. x
( ph  /\  A. y ps ) )
4 aaanh.2 . . . 4  |-  ( ps 
->  A. x ps )
54hbal 1499 . . 3  |-  ( A. y ps  ->  A. x A. y ps )
6519.27h 1582 . 2  |-  ( A. x ( ph  /\  A. y ps )  <->  ( A. x ph  /\  A. y ps ) )
73, 6bitri 184 1  |-  ( A. x A. y ( ph  /\ 
ps )  <->  ( A. x ph  /\  A. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-4 1532
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mo23  2094  2eu4  2146
  Copyright terms: Public domain W3C validator