![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi1i | Unicode version |
Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anbi1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm5.32ri 455 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 803 pm5.75 964 3ancoma 987 3ioran 995 an6 1332 19.26-3an 1494 19.28h 1573 19.28 1574 eeeanv 1949 sb3an 1974 moanim 2116 nfrexdya 2530 r19.26-3 2624 r19.41 2649 rexcomf 2656 3reeanv 2665 cbvreu 2724 ceqsex3v 2802 rexab 2922 rexrab 2923 rmo4 2953 rmo3f 2957 reuind 2965 sbc3an 3047 rmo3 3077 ssrab 3257 rexun 3339 elin3 3350 inass 3369 unssdif 3394 indifdir 3415 difin2 3421 inrab2 3432 rabun2 3438 reuun2 3442 undif4 3509 rexdifpr 3646 rexsns 3657 rexdifsn 3750 2ralunsn 3824 iuncom4 3919 iunxiun 3994 inuni 4184 unidif0 4196 bnd2 4202 otth2 4270 copsexg 4273 copsex4g 4276 opeqsn 4281 opelopabsbALT 4289 elpwpwel 4506 suc11g 4589 rabxp 4696 opeliunxp 4714 xpundir 4716 xpiundi 4717 xpiundir 4718 brinxp2 4726 rexiunxp 4804 brres 4948 brresg 4950 dmres 4963 resiexg 4987 dminss 5080 imainss 5081 ssrnres 5108 elxp4 5153 elxp5 5154 cnvresima 5155 coundi 5167 resco 5170 imaco 5171 coiun 5175 coi1 5181 coass 5184 xpcom 5212 dffun2 5264 fncnv 5320 imadiflem 5333 imadif 5334 imainlem 5335 mptun 5385 fcnvres 5437 dff1o2 5505 dff1o3 5506 ffoss 5532 f11o 5533 brprcneu 5547 fvun2 5624 eqfnfv3 5657 respreima 5686 f1ompt 5709 fsn 5730 abrexco 5802 imaiun 5803 f1mpt 5814 dff1o6 5819 oprabid 5950 dfoprab2 5965 oprab4 5989 mpomptx 6009 opabex3d 6173 opabex3 6174 abexssex 6177 dfopab2 6242 dfoprab3s 6243 1stconst 6274 2ndconst 6275 xporderlem 6284 spc2ed 6286 f1od2 6288 brtpos2 6304 tpostpos 6317 tposmpo 6334 oviec 6695 mapsncnv 6749 dfixp 6754 domen 6805 mapsnen 6865 xpsnen 6875 xpcomco 6880 xpassen 6884 ltexpi 7397 dfmq0qs 7489 dfplq0qs 7490 enq0enq 7491 enq0ref 7493 enq0tr 7494 nqnq0pi 7498 prnmaxl 7548 prnminu 7549 suplocexprlemloc 7781 addsrpr 7805 mulsrpr 7806 suplocsrlemb 7866 addcnsr 7894 mulcnsr 7895 ltresr 7899 addvalex 7904 axprecex 7940 elnnz 9327 fnn0ind 9433 rexuz2 9646 qreccl 9707 rexrp 9742 elixx3g 9967 elfz2 10081 elfzuzb 10085 fznn 10155 elfz2nn0 10178 fznn0 10179 4fvwrd4 10206 elfzo2 10216 fzind2 10306 cvg1nlemres 11129 fsum2dlemstep 11577 modfsummod 11601 fprodseq 11726 divalgb 12066 bezoutlemmain 12135 isprm2 12255 oddpwdc 12312 prdsex 12880 xpscf 12930 issubg3 13262 releqgg 13290 eqgex 13291 imasabl 13406 dfrhm2 13650 ntreq0 14300 cnnei 14400 txlm 14447 blres 14602 isms2 14622 dedekindicclemicc 14786 limcrcl 14812 lgsquadlem1 15191 bdcriota 15375 bj-peano4 15447 alsconv 15570 |
Copyright terms: Public domain | W3C validator |