![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi1i | Unicode version |
Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anbi1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm5.32ri 455 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 802 pm5.75 962 3ancoma 985 3ioran 993 an6 1321 19.26-3an 1483 19.28h 1562 19.28 1563 eeeanv 1933 sb3an 1958 moanim 2100 nfrexdya 2513 r19.26-3 2607 r19.41 2632 rexcomf 2639 3reeanv 2648 cbvreu 2702 ceqsex3v 2780 rexab 2900 rexrab 2901 rmo4 2931 rmo3f 2935 reuind 2943 sbc3an 3025 rmo3 3055 ssrab 3234 rexun 3316 elin3 3327 inass 3346 unssdif 3371 indifdir 3392 difin2 3398 inrab2 3409 rabun2 3415 reuun2 3419 undif4 3486 rexdifpr 3621 rexsns 3632 rexdifsn 3725 2ralunsn 3799 iuncom4 3894 iunxiun 3969 inuni 4156 unidif0 4168 bnd2 4174 otth2 4242 copsexg 4245 copsex4g 4248 opeqsn 4253 opelopabsbALT 4260 elpwpwel 4476 suc11g 4557 rabxp 4664 opeliunxp 4682 xpundir 4684 xpiundi 4685 xpiundir 4686 brinxp2 4694 rexiunxp 4770 brres 4914 brresg 4916 dmres 4929 resiexg 4953 dminss 5044 imainss 5045 ssrnres 5072 elxp4 5117 elxp5 5118 cnvresima 5119 coundi 5131 resco 5134 imaco 5135 coiun 5139 coi1 5145 coass 5148 xpcom 5176 dffun2 5227 fncnv 5283 imadiflem 5296 imadif 5297 imainlem 5298 mptun 5348 fcnvres 5400 dff1o2 5467 dff1o3 5468 ffoss 5494 f11o 5495 brprcneu 5509 fvun2 5584 eqfnfv3 5616 respreima 5645 f1ompt 5668 fsn 5689 abrexco 5760 imaiun 5761 f1mpt 5772 dff1o6 5777 oprabid 5907 dfoprab2 5922 oprab4 5946 mpomptx 5966 opabex3d 6122 opabex3 6123 abexssex 6126 dfopab2 6190 dfoprab3s 6191 1stconst 6222 2ndconst 6223 xporderlem 6232 spc2ed 6234 f1od2 6236 brtpos2 6252 tpostpos 6265 tposmpo 6282 oviec 6641 mapsncnv 6695 dfixp 6700 domen 6751 mapsnen 6811 xpsnen 6821 xpcomco 6826 xpassen 6830 ltexpi 7336 dfmq0qs 7428 dfplq0qs 7429 enq0enq 7430 enq0ref 7432 enq0tr 7433 nqnq0pi 7437 prnmaxl 7487 prnminu 7488 suplocexprlemloc 7720 addsrpr 7744 mulsrpr 7745 suplocsrlemb 7805 addcnsr 7833 mulcnsr 7834 ltresr 7838 addvalex 7843 axprecex 7879 elnnz 9263 fnn0ind 9369 rexuz2 9581 qreccl 9642 rexrp 9676 elixx3g 9901 elfz2 10015 elfzuzb 10019 fznn 10089 elfz2nn0 10112 fznn0 10113 4fvwrd4 10140 elfzo2 10150 fzind2 10239 cvg1nlemres 10994 fsum2dlemstep 11442 modfsummod 11466 fprodseq 11591 divalgb 11930 bezoutlemmain 11999 isprm2 12117 oddpwdc 12174 prdsex 12718 xpscf 12766 issubg3 13052 releqgg 13080 ntreq0 13635 cnnei 13735 txlm 13782 blres 13937 isms2 13957 dedekindicclemicc 14113 limcrcl 14130 bdcriota 14638 bj-peano4 14710 alsconv 14830 |
Copyright terms: Public domain | W3C validator |