| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi1i | Unicode version | ||
| Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| bi.aa |
|
| Ref | Expression |
|---|---|
| anbi1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.aa |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | pm5.32ri 455 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 804 pm5.75 965 3ancoma 988 3ioran 996 an6 1334 19.26-3an 1506 19.28h 1585 19.28 1586 eeeanv 1961 sb3an 1986 moanim 2128 nfrexdya 2542 r19.26-3 2636 r19.41 2661 rexcomf 2668 3reeanv 2677 cbvreu 2736 ceqsex3v 2815 rexab 2935 rexrab 2936 rmo4 2966 rmo3f 2970 reuind 2978 sbc3an 3060 rmo3 3090 ssrab 3271 rexun 3353 elin3 3364 inass 3383 unssdif 3408 indifdir 3429 difin2 3435 inrab2 3446 rabun2 3452 reuun2 3456 undif4 3523 rexdifpr 3661 rexsns 3672 rexdifsn 3765 2ralunsn 3839 iuncom4 3934 iunxiun 4009 inuni 4200 unidif0 4212 bnd2 4218 otth2 4286 copsexg 4289 copsex4g 4292 opeqsn 4298 opelopabsbALT 4306 elpwpwel 4523 suc11g 4606 rabxp 4713 opeliunxp 4731 xpundir 4733 xpiundi 4734 xpiundir 4735 brinxp2 4743 rexiunxp 4821 brres 4966 brresg 4968 dmres 4981 resiexg 5005 dminss 5098 imainss 5099 ssrnres 5126 elxp4 5171 elxp5 5172 cnvresima 5173 coundi 5185 resco 5188 imaco 5189 coiun 5193 coi1 5199 coass 5202 xpcom 5230 dffun2 5282 fncnv 5341 imadiflem 5354 imadif 5355 imainlem 5356 mptun 5409 fcnvres 5461 dff1o2 5529 dff1o3 5530 ffoss 5556 f11o 5557 brprcneu 5571 fvun2 5648 eqfnfv3 5681 respreima 5710 f1ompt 5733 fsn 5754 abrexco 5830 imaiun 5831 f1mpt 5842 dff1o6 5847 oprabid 5978 dfoprab2 5994 oprab4 6018 mpomptx 6038 opabex3d 6208 opabex3 6209 abexssex 6212 dfopab2 6277 dfoprab3s 6278 1stconst 6309 2ndconst 6310 xporderlem 6319 spc2ed 6321 f1od2 6323 brtpos2 6339 tpostpos 6352 tposmpo 6369 oviec 6730 mapsncnv 6784 dfixp 6789 domen 6842 mapsnen 6905 xpsnen 6918 xpcomco 6923 xpassen 6927 ltexpi 7452 dfmq0qs 7544 dfplq0qs 7545 enq0enq 7546 enq0ref 7548 enq0tr 7549 nqnq0pi 7553 prnmaxl 7603 prnminu 7604 suplocexprlemloc 7836 addsrpr 7860 mulsrpr 7861 suplocsrlemb 7921 addcnsr 7949 mulcnsr 7950 ltresr 7954 addvalex 7959 axprecex 7995 elnnz 9384 fnn0ind 9491 rexuz2 9704 qreccl 9765 rexrp 9800 elixx3g 10025 elfz2 10139 elfzuzb 10143 fznn 10213 elfz2nn0 10236 fznn0 10237 4fvwrd4 10264 elfzo2 10274 fzind2 10370 cvg1nlemres 11329 fsum2dlemstep 11778 modfsummod 11802 fprodseq 11927 divalgb 12269 bezoutlemmain 12352 isprm2 12472 oddpwdc 12529 prdsex 13134 prdsval 13138 prdsbaslemss 13139 xpscf 13212 issubg3 13561 releqgg 13589 eqgex 13590 imasabl 13705 dfrhm2 13949 ntreq0 14637 cnnei 14737 txlm 14784 blres 14939 isms2 14959 dedekindicclemicc 15137 limcrcl 15163 lgsquadlem1 15587 lgsquadlem2 15588 bdcriota 15856 bj-peano4 15928 alsconv 16056 |
| Copyright terms: Public domain | W3C validator |