| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi1i | Unicode version | ||
| Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| bi.aa |
|
| Ref | Expression |
|---|---|
| anbi1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.aa |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | pm5.32ri 455 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 804 pm5.75 965 3ancoma 988 3ioran 996 an6 1334 19.26-3an 1506 19.28h 1585 19.28 1586 eeeanv 1961 sb3an 1986 moanim 2128 nfrexdya 2542 r19.26-3 2636 r19.41 2661 rexcomf 2668 3reeanv 2677 cbvreu 2736 ceqsex3v 2815 rexab 2935 rexrab 2936 rmo4 2966 rmo3f 2970 reuind 2978 sbc3an 3060 rmo3 3090 ssrab 3271 rexun 3353 elin3 3364 inass 3383 unssdif 3408 indifdir 3429 difin2 3435 inrab2 3446 rabun2 3452 reuun2 3456 undif4 3523 rexdifpr 3661 rexsns 3672 rexdifsn 3765 2ralunsn 3839 iuncom4 3934 iunxiun 4009 inuni 4199 unidif0 4211 bnd2 4217 otth2 4285 copsexg 4288 copsex4g 4291 opeqsn 4297 opelopabsbALT 4305 elpwpwel 4522 suc11g 4605 rabxp 4712 opeliunxp 4730 xpundir 4732 xpiundi 4733 xpiundir 4734 brinxp2 4742 rexiunxp 4820 brres 4965 brresg 4967 dmres 4980 resiexg 5004 dminss 5097 imainss 5098 ssrnres 5125 elxp4 5170 elxp5 5171 cnvresima 5172 coundi 5184 resco 5187 imaco 5188 coiun 5192 coi1 5198 coass 5201 xpcom 5229 dffun2 5281 fncnv 5340 imadiflem 5353 imadif 5354 imainlem 5355 mptun 5407 fcnvres 5459 dff1o2 5527 dff1o3 5528 ffoss 5554 f11o 5555 brprcneu 5569 fvun2 5646 eqfnfv3 5679 respreima 5708 f1ompt 5731 fsn 5752 abrexco 5828 imaiun 5829 f1mpt 5840 dff1o6 5845 oprabid 5976 dfoprab2 5992 oprab4 6016 mpomptx 6036 opabex3d 6206 opabex3 6207 abexssex 6210 dfopab2 6275 dfoprab3s 6276 1stconst 6307 2ndconst 6308 xporderlem 6317 spc2ed 6319 f1od2 6321 brtpos2 6337 tpostpos 6350 tposmpo 6367 oviec 6728 mapsncnv 6782 dfixp 6787 domen 6840 mapsnen 6903 xpsnen 6916 xpcomco 6921 xpassen 6925 ltexpi 7450 dfmq0qs 7542 dfplq0qs 7543 enq0enq 7544 enq0ref 7546 enq0tr 7547 nqnq0pi 7551 prnmaxl 7601 prnminu 7602 suplocexprlemloc 7834 addsrpr 7858 mulsrpr 7859 suplocsrlemb 7919 addcnsr 7947 mulcnsr 7948 ltresr 7952 addvalex 7957 axprecex 7993 elnnz 9382 fnn0ind 9489 rexuz2 9702 qreccl 9763 rexrp 9798 elixx3g 10023 elfz2 10137 elfzuzb 10141 fznn 10211 elfz2nn0 10234 fznn0 10235 4fvwrd4 10262 elfzo2 10272 fzind2 10368 cvg1nlemres 11296 fsum2dlemstep 11745 modfsummod 11769 fprodseq 11894 divalgb 12236 bezoutlemmain 12319 isprm2 12439 oddpwdc 12496 prdsex 13101 prdsval 13105 prdsbaslemss 13106 xpscf 13179 issubg3 13528 releqgg 13556 eqgex 13557 imasabl 13672 dfrhm2 13916 ntreq0 14604 cnnei 14704 txlm 14751 blres 14906 isms2 14926 dedekindicclemicc 15104 limcrcl 15130 lgsquadlem1 15554 lgsquadlem2 15555 bdcriota 15819 bj-peano4 15891 alsconv 16019 |
| Copyright terms: Public domain | W3C validator |