| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi1i | Unicode version | ||
| Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| bi.aa |
|
| Ref | Expression |
|---|---|
| anbi1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.aa |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | pm5.32ri 455 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 590 pm5.53 804 pm5.75 965 3ancoma 988 3ioran 996 an6 1334 19.26-3an 1507 19.28h 1586 19.28 1587 eeeanv 1962 sb3an 1987 moanim 2130 nfrexdya 2544 r19.26-3 2638 r19.41 2663 rexcomf 2670 3reeanv 2679 cbvreu 2740 ceqsex3v 2820 rexab 2942 rexrab 2943 rmo4 2973 rmo3f 2977 reuind 2985 sbc3an 3067 rmo3 3098 ssrab 3279 rexun 3361 elin3 3372 inass 3391 unssdif 3416 indifdir 3437 difin2 3443 inrab2 3454 rabun2 3460 reuun2 3464 undif4 3531 rexdifpr 3671 rexsns 3682 rexdifsn 3776 2ralunsn 3853 iuncom4 3948 iunxiun 4023 inuni 4215 unidif0 4227 bnd2 4233 otth2 4303 copsexg 4306 copsex4g 4309 opeqsn 4315 opelopabsbALT 4323 elpwpwel 4540 suc11g 4623 rabxp 4730 opeliunxp 4748 xpundir 4750 xpiundi 4751 xpiundir 4752 brinxp2 4760 rexiunxp 4838 brres 4984 brresg 4986 dmres 4999 resiexg 5023 dminss 5116 imainss 5117 ssrnres 5144 elxp4 5189 elxp5 5190 cnvresima 5191 coundi 5203 resco 5206 imaco 5207 coiun 5211 coi1 5217 coass 5220 xpcom 5248 dffun2 5300 fncnv 5359 imadiflem 5372 imadif 5373 imainlem 5374 mptun 5427 fcnvres 5481 dff1o2 5549 dff1o3 5550 ffoss 5576 f11o 5577 brprcneu 5592 fvun2 5669 eqfnfv3 5702 respreima 5731 f1ompt 5754 fsn 5775 abrexco 5851 imaiun 5852 f1mpt 5863 dff1o6 5868 oprabid 5999 dfoprab2 6015 oprab4 6039 mpomptx 6059 opabex3d 6229 opabex3 6230 abexssex 6233 dfopab2 6298 dfoprab3s 6299 1stconst 6330 2ndconst 6331 xporderlem 6340 spc2ed 6342 f1od2 6344 brtpos2 6360 tpostpos 6373 tposmpo 6390 oviec 6751 mapsncnv 6805 dfixp 6810 domen 6863 mapsnen 6927 xpsnen 6941 xpcomco 6946 xpassen 6950 ltexpi 7485 dfmq0qs 7577 dfplq0qs 7578 enq0enq 7579 enq0ref 7581 enq0tr 7582 nqnq0pi 7586 prnmaxl 7636 prnminu 7637 suplocexprlemloc 7869 addsrpr 7893 mulsrpr 7894 suplocsrlemb 7954 addcnsr 7982 mulcnsr 7983 ltresr 7987 addvalex 7992 axprecex 8028 elnnz 9417 fnn0ind 9524 rexuz2 9737 qreccl 9798 rexrp 9833 elixx3g 10058 elfz2 10172 elfzuzb 10176 fznn 10246 elfz2nn0 10269 fznn0 10270 4fvwrd4 10297 elfzo2 10307 fzind2 10405 cvg1nlemres 11411 fsum2dlemstep 11860 modfsummod 11884 fprodseq 12009 divalgb 12351 bezoutlemmain 12434 isprm2 12554 oddpwdc 12611 prdsex 13216 prdsval 13220 prdsbaslemss 13221 xpscf 13294 issubg3 13643 releqgg 13671 eqgex 13672 imasabl 13787 dfrhm2 14031 ntreq0 14719 cnnei 14819 txlm 14866 blres 15021 isms2 15041 dedekindicclemicc 15219 limcrcl 15245 lgsquadlem1 15669 lgsquadlem2 15670 bdcriota 16018 bj-peano4 16090 alsconv 16221 |
| Copyright terms: Public domain | W3C validator |