| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi1i | Unicode version | ||
| Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| bi.aa |
|
| Ref | Expression |
|---|---|
| anbi1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.aa |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | pm5.32ri 455 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi2ci 459 anbi12i 460 bianassc 470 an12 561 anandi 592 pm5.53 807 pm5.75 968 3ancoma 1009 3ioran 1017 an6 1355 19.26-3an 1529 19.28h 1608 19.28 1609 eeeanv 1984 sb3an 2009 moanim 2152 nfrexdya 2566 r19.26-3 2661 r19.41 2686 rexcomf 2693 3reeanv 2702 cbvreu 2763 ceqsex3v 2843 rexab 2965 rexrab 2966 rmo4 2996 rmo3f 3000 reuind 3008 sbc3an 3090 rmo3 3121 ssrab 3302 rexun 3384 elin3 3395 inass 3414 unssdif 3439 indifdir 3460 difin2 3466 inrab2 3477 rabun2 3483 reuun2 3487 undif4 3554 rexdifpr 3694 rexsns 3705 rexdifsn 3800 2ralunsn 3877 iuncom4 3972 iunxiun 4047 inuni 4239 unidif0 4251 bnd2 4257 otth2 4327 copsexg 4330 copsex4g 4333 opeqsn 4339 opelopabsbALT 4347 elpwpwel 4566 suc11g 4649 rabxp 4756 opeliunxp 4774 xpundir 4776 xpiundi 4777 xpiundir 4778 brinxp2 4786 rexiunxp 4864 brres 5011 brresg 5013 dmres 5026 resiexg 5050 dminss 5143 imainss 5144 ssrnres 5171 elxp4 5216 elxp5 5217 cnvresima 5218 coundi 5230 resco 5233 imaco 5234 coiun 5238 coi1 5244 coass 5247 xpcom 5275 dffun2 5328 fncnv 5387 imadiflem 5400 imadif 5401 imainlem 5402 mptun 5455 fcnvres 5509 dff1o2 5577 dff1o3 5578 ffoss 5604 f11o 5605 brprcneu 5620 fvun2 5701 eqfnfv3 5734 respreima 5763 f1ompt 5786 fsn 5807 abrexco 5883 imaiun 5884 f1mpt 5895 dff1o6 5900 oprabid 6033 dfoprab2 6051 oprab4 6075 mpomptx 6095 opabex3d 6266 opabex3 6267 abexssex 6270 dfopab2 6335 dfoprab3s 6336 1stconst 6367 2ndconst 6368 xporderlem 6377 spc2ed 6379 f1od2 6381 brtpos2 6397 tpostpos 6410 tposmpo 6427 oviec 6788 mapsncnv 6842 dfixp 6847 domen 6900 mapsnen 6964 xpsnen 6980 xpcomco 6985 xpassen 6989 ltexpi 7524 dfmq0qs 7616 dfplq0qs 7617 enq0enq 7618 enq0ref 7620 enq0tr 7621 nqnq0pi 7625 prnmaxl 7675 prnminu 7676 suplocexprlemloc 7908 addsrpr 7932 mulsrpr 7933 suplocsrlemb 7993 addcnsr 8021 mulcnsr 8022 ltresr 8026 addvalex 8031 axprecex 8067 elnnz 9456 fnn0ind 9563 rexuz2 9776 qreccl 9837 rexrp 9872 elixx3g 10097 elfz2 10211 elfzuzb 10215 fznn 10285 elfz2nn0 10308 fznn0 10309 4fvwrd4 10336 elfzo2 10346 fzind2 10445 cvg1nlemres 11496 fsum2dlemstep 11945 modfsummod 11969 fprodseq 12094 divalgb 12436 bezoutlemmain 12519 isprm2 12639 oddpwdc 12696 prdsex 13302 prdsval 13306 prdsbaslemss 13307 xpscf 13380 issubg3 13729 releqgg 13757 eqgex 13758 imasabl 13873 dfrhm2 14118 ntreq0 14806 cnnei 14906 txlm 14953 blres 15108 isms2 15128 dedekindicclemicc 15306 limcrcl 15332 lgsquadlem1 15756 lgsquadlem2 15757 bdcriota 16246 bj-peano4 16318 alsconv 16448 |
| Copyright terms: Public domain | W3C validator |