ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.34 Unicode version

Theorem 19.34 1619
Description: Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.34  |-  ( ( A. x ph  \/  E. x ps )  ->  E. x ( ph  \/  ps ) )

Proof of Theorem 19.34
StepHypRef Expression
1 19.2 1574 . . 3  |-  ( A. x ph  ->  E. x ph )
21orim1i 712 . 2  |-  ( ( A. x ph  \/  E. x ps )  -> 
( E. x ph  \/  E. x ps )
)
3 19.43 1564 . 2  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )
42, 3sylibr 132 1  |-  ( ( A. x ph  \/  E. x ps )  ->  E. x ( ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 664   A.wal 1287   E.wex 1426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-ial 1472
This theorem depends on definitions:  df-bi 115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator