ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.34 Unicode version

Theorem 19.34 1695
Description: Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.34  |-  ( ( A. x ph  \/  E. x ps )  ->  E. x ( ph  \/  ps ) )

Proof of Theorem 19.34
StepHypRef Expression
1 19.2 1649 . . 3  |-  ( A. x ph  ->  E. x ph )
21orim1i 761 . 2  |-  ( ( A. x ph  \/  E. x ps )  -> 
( E. x ph  \/  E. x ps )
)
3 19.43 1639 . 2  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )
42, 3sylibr 134 1  |-  ( ( A. x ph  \/  E. x ps )  ->  E. x ( ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709   A.wal 1362   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator