ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.2 Unicode version

Theorem 19.2 1572
Description: Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. (Contributed by O'Cat, 31-Mar-2008.)
Assertion
Ref Expression
19.2  |-  ( A. x ph  ->  E. y ph )

Proof of Theorem 19.2
StepHypRef Expression
1 19.8a 1525 . 2  |-  ( ph  ->  E. y ph )
21sps 1473 1  |-  ( A. x ph  ->  E. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1285   E.wex 1424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-4 1443
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  i19.24  1573  i19.39  1574  19.34  1617  eusv2i  4253
  Copyright terms: Public domain W3C validator