Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.34 | GIF version |
Description: Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.34 | ⊢ ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.2 1626 | . . 3 ⊢ (∀𝑥𝜑 → ∃𝑥𝜑) | |
2 | 1 | orim1i 750 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
3 | 19.43 1616 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | |
4 | 2, 3 | sylibr 133 | 1 ⊢ ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |