![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.34 | GIF version |
Description: Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.34 | ⊢ ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.2 1574 | . . 3 ⊢ (∀𝑥𝜑 → ∃𝑥𝜑) | |
2 | 1 | orim1i 712 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
3 | 19.43 1564 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | |
4 | 2, 3 | sylibr 132 | 1 ⊢ ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 664 ∀wal 1287 ∃wex 1426 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |