ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.34 GIF version

Theorem 19.34 1661
Description: Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.34 ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))

Proof of Theorem 19.34
StepHypRef Expression
1 19.2 1615 . . 3 (∀𝑥𝜑 → ∃𝑥𝜑)
21orim1i 750 . 2 ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → (∃𝑥𝜑 ∨ ∃𝑥𝜓))
3 19.43 1605 . 2 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
42, 3sylibr 133 1 ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698  wal 1330  wex 1469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-4 1487  ax-ial 1511
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator