ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.43 Unicode version

Theorem 19.43 1651
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
19.43  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )

Proof of Theorem 19.43
StepHypRef Expression
1 hbe1 1518 . . . 4  |-  ( E. x ph  ->  A. x E. x ph )
2 hbe1 1518 . . . 4  |-  ( E. x ps  ->  A. x E. x ps )
31, 2hbor 1569 . . 3  |-  ( ( E. x ph  \/  E. x ps )  ->  A. x ( E. x ph  \/  E. x ps ) )
4 19.8a 1613 . . . 4  |-  ( ph  ->  E. x ph )
5 19.8a 1613 . . . 4  |-  ( ps 
->  E. x ps )
64, 5orim12i 761 . . 3  |-  ( (
ph  \/  ps )  ->  ( E. x ph  \/  E. x ps )
)
73, 6exlimih 1616 . 2  |-  ( E. x ( ph  \/  ps )  ->  ( E. x ph  \/  E. x ps ) )
8 orc 714 . . . 4  |-  ( ph  ->  ( ph  \/  ps ) )
98eximi 1623 . . 3  |-  ( E. x ph  ->  E. x
( ph  \/  ps ) )
10 olc 713 . . . 4  |-  ( ps 
->  ( ph  \/  ps ) )
1110eximi 1623 . . 3  |-  ( E. x ps  ->  E. x
( ph  \/  ps ) )
129, 11jaoi 718 . 2  |-  ( ( E. x ph  \/  E. x ps )  ->  E. x ( ph  \/  ps ) )
137, 12impbii 126 1  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 710   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.44  1705  19.45  1706  19.34  1707  sborv  1914  r19.43  2664  rexun  3353  unipr  3864  uniun  3869  unopab  4123  dmun  4885  coundi  5184  coundir  5185
  Copyright terms: Public domain W3C validator