ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.43 Unicode version

Theorem 19.43 1616
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
19.43  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )

Proof of Theorem 19.43
StepHypRef Expression
1 hbe1 1483 . . . 4  |-  ( E. x ph  ->  A. x E. x ph )
2 hbe1 1483 . . . 4  |-  ( E. x ps  ->  A. x E. x ps )
31, 2hbor 1534 . . 3  |-  ( ( E. x ph  \/  E. x ps )  ->  A. x ( E. x ph  \/  E. x ps ) )
4 19.8a 1578 . . . 4  |-  ( ph  ->  E. x ph )
5 19.8a 1578 . . . 4  |-  ( ps 
->  E. x ps )
64, 5orim12i 749 . . 3  |-  ( (
ph  \/  ps )  ->  ( E. x ph  \/  E. x ps )
)
73, 6exlimih 1581 . 2  |-  ( E. x ( ph  \/  ps )  ->  ( E. x ph  \/  E. x ps ) )
8 orc 702 . . . 4  |-  ( ph  ->  ( ph  \/  ps ) )
98eximi 1588 . . 3  |-  ( E. x ph  ->  E. x
( ph  \/  ps ) )
10 olc 701 . . . 4  |-  ( ps 
->  ( ph  \/  ps ) )
1110eximi 1588 . . 3  |-  ( E. x ps  ->  E. x
( ph  \/  ps ) )
129, 11jaoi 706 . 2  |-  ( ( E. x ph  \/  E. x ps )  ->  E. x ( ph  \/  ps ) )
137, 12impbii 125 1  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 698   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.44  1670  19.45  1671  19.34  1672  sborv  1878  r19.43  2624  rexun  3302  unipr  3803  uniun  3808  unopab  4061  dmun  4811  coundi  5105  coundir  5106
  Copyright terms: Public domain W3C validator