ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.43 Unicode version

Theorem 19.43 1642
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
19.43  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )

Proof of Theorem 19.43
StepHypRef Expression
1 hbe1 1509 . . . 4  |-  ( E. x ph  ->  A. x E. x ph )
2 hbe1 1509 . . . 4  |-  ( E. x ps  ->  A. x E. x ps )
31, 2hbor 1560 . . 3  |-  ( ( E. x ph  \/  E. x ps )  ->  A. x ( E. x ph  \/  E. x ps ) )
4 19.8a 1604 . . . 4  |-  ( ph  ->  E. x ph )
5 19.8a 1604 . . . 4  |-  ( ps 
->  E. x ps )
64, 5orim12i 760 . . 3  |-  ( (
ph  \/  ps )  ->  ( E. x ph  \/  E. x ps )
)
73, 6exlimih 1607 . 2  |-  ( E. x ( ph  \/  ps )  ->  ( E. x ph  \/  E. x ps ) )
8 orc 713 . . . 4  |-  ( ph  ->  ( ph  \/  ps ) )
98eximi 1614 . . 3  |-  ( E. x ph  ->  E. x
( ph  \/  ps ) )
10 olc 712 . . . 4  |-  ( ps 
->  ( ph  \/  ps ) )
1110eximi 1614 . . 3  |-  ( E. x ps  ->  E. x
( ph  \/  ps ) )
129, 11jaoi 717 . 2  |-  ( ( E. x ph  \/  E. x ps )  ->  E. x ( ph  \/  ps ) )
137, 12impbii 126 1  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.44  1696  19.45  1697  19.34  1698  sborv  1905  r19.43  2655  rexun  3343  unipr  3853  uniun  3858  unopab  4112  dmun  4873  coundi  5171  coundir  5172
  Copyright terms: Public domain W3C validator