![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.9 | Unicode version |
Description: A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
Ref | Expression |
---|---|
19.9.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
19.9 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.9.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nfri 1467 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | 19.9h 1590 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-4 1455 |
This theorem depends on definitions: df-bi 116 df-nf 1405 |
This theorem is referenced by: alexim 1592 19.19 1612 19.36-1 1619 19.44 1628 19.45 1629 19.41 1632 |
Copyright terms: Public domain | W3C validator |