ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9 Unicode version

Theorem 19.9 1668
Description: A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypothesis
Ref Expression
19.9.1  |-  F/ x ph
Assertion
Ref Expression
19.9  |-  ( E. x ph  <->  ph )

Proof of Theorem 19.9
StepHypRef Expression
1 19.9.1 . . 3  |-  F/ x ph
21nfri 1543 . 2  |-  ( ph  ->  A. x ph )
3219.9h 1667 1  |-  ( E. x ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   F/wnf 1484   E.wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  alexim  1669  19.19  1690  19.36-1  1697  19.44  1706  19.45  1707  19.41  1710
  Copyright terms: Public domain W3C validator