ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9 GIF version

Theorem 19.9 1632
Description: A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypothesis
Ref Expression
19.9.1 𝑥𝜑
Assertion
Ref Expression
19.9 (∃𝑥𝜑𝜑)

Proof of Theorem 19.9
StepHypRef Expression
1 19.9.1 . . 3 𝑥𝜑
21nfri 1507 . 2 (𝜑 → ∀𝑥𝜑)
3219.9h 1631 1 (∃𝑥𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wnf 1448  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  alexim  1633  19.19  1654  19.36-1  1661  19.44  1670  19.45  1671  19.41  1674
  Copyright terms: Public domain W3C validator