ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9 GIF version

Theorem 19.9 1666
Description: A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypothesis
Ref Expression
19.9.1 𝑥𝜑
Assertion
Ref Expression
19.9 (∃𝑥𝜑𝜑)

Proof of Theorem 19.9
StepHypRef Expression
1 19.9.1 . . 3 𝑥𝜑
21nfri 1541 . 2 (𝜑 → ∀𝑥𝜑)
3219.9h 1665 1 (∃𝑥𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wnf 1482  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532
This theorem depends on definitions:  df-bi 117  df-nf 1483
This theorem is referenced by:  alexim  1667  19.19  1688  19.36-1  1695  19.44  1704  19.45  1705  19.41  1708
  Copyright terms: Public domain W3C validator