ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexim Unicode version

Theorem alexim 1668
Description: One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1642. (Contributed by Jim Kingdon, 2-Jul-2018.)
Assertion
Ref Expression
alexim  |-  ( A. x ph  ->  -.  E. x  -.  ph )

Proof of Theorem alexim
StepHypRef Expression
1 pm2.24 622 . . . . 5  |-  ( ph  ->  ( -.  ph  -> F.  ) )
21alimi 1478 . . . 4  |-  ( A. x ph  ->  A. x
( -.  ph  -> F.  ) )
3 exim 1622 . . . 4  |-  ( A. x ( -.  ph  -> F.  )  ->  ( E. x  -.  ph  ->  E. x F.  ) )
42, 3syl 14 . . 3  |-  ( A. x ph  ->  ( E. x  -.  ph  ->  E. x F.  ) )
5 nfv 1551 . . . 4  |-  F/ x F.
6519.9 1667 . . 3  |-  ( E. x F.  <-> F.  )
74, 6imbitrdi 161 . 2  |-  ( A. x ph  ->  ( E. x  -.  ph  -> F.  )
)
8 dfnot 1391 . 2  |-  ( -. 
E. x  -.  ph  <->  ( E. x  -.  ph  -> F.  ) )
97, 8sylibr 134 1  |-  ( A. x ph  ->  -.  E. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1371   F. wfal 1378   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484
This theorem is referenced by:  exnalim  1669  exists2  2151
  Copyright terms: Public domain W3C validator