ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexim Unicode version

Theorem alexim 1667
Description: One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1641. (Contributed by Jim Kingdon, 2-Jul-2018.)
Assertion
Ref Expression
alexim  |-  ( A. x ph  ->  -.  E. x  -.  ph )

Proof of Theorem alexim
StepHypRef Expression
1 pm2.24 622 . . . . 5  |-  ( ph  ->  ( -.  ph  -> F.  ) )
21alimi 1477 . . . 4  |-  ( A. x ph  ->  A. x
( -.  ph  -> F.  ) )
3 exim 1621 . . . 4  |-  ( A. x ( -.  ph  -> F.  )  ->  ( E. x  -.  ph  ->  E. x F.  ) )
42, 3syl 14 . . 3  |-  ( A. x ph  ->  ( E. x  -.  ph  ->  E. x F.  ) )
5 nfv 1550 . . . 4  |-  F/ x F.
6519.9 1666 . . 3  |-  ( E. x F.  <-> F.  )
74, 6imbitrdi 161 . 2  |-  ( A. x ph  ->  ( E. x  -.  ph  -> F.  )
)
8 dfnot 1390 . 2  |-  ( -. 
E. x  -.  ph  <->  ( E. x  -.  ph  -> F.  ) )
97, 8sylibr 134 1  |-  ( A. x ph  ->  -.  E. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1370   F. wfal 1377   E.wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483
This theorem is referenced by:  exnalim  1668  exists2  2150
  Copyright terms: Public domain W3C validator