ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.44 Unicode version

Theorem 19.44 1693
Description: Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.44.1  |-  F/ x ps
Assertion
Ref Expression
19.44  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  ps ) )

Proof of Theorem 19.44
StepHypRef Expression
1 19.43 1639 . 2  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )
2 19.44.1 . . . 4  |-  F/ x ps
3219.9 1655 . . 3  |-  ( E. x ps  <->  ps )
43orbi2i 763 . 2  |-  ( ( E. x ph  \/  E. x ps )  <->  ( E. x ph  \/  ps )
)
51, 4bitri 184 1  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709   F/wnf 1471   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  eeor  1706
  Copyright terms: Public domain W3C validator