ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9d Unicode version

Theorem 19.9d 1649
Description: A deduction version of one direction of 19.9 1632. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.9d.1  |-  ( ps 
->  F/ x ph )
Assertion
Ref Expression
19.9d  |-  ( ps 
->  ( E. x ph  ->  ph ) )

Proof of Theorem 19.9d
StepHypRef Expression
1 19.9d.1 . . 3  |-  ( ps 
->  F/ x ph )
2 19.9t 1630 . . 3  |-  ( F/ x ph  ->  ( E. x ph  <->  ph ) )
31, 2syl 14 . 2  |-  ( ps 
->  ( E. x ph  <->  ph ) )
43biimpd 143 1  |-  ( ps 
->  ( E. x ph  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1448   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator