ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9t Unicode version

Theorem 19.9t 1688
Description: A closed version of 19.9 1690. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.)
Assertion
Ref Expression
19.9t  |-  ( F/ x ph  ->  ( E. x ph  <->  ph ) )

Proof of Theorem 19.9t
StepHypRef Expression
1 df-nf 1507 . . 3  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
2 19.9ht 1687 . . 3  |-  ( A. x ( ph  ->  A. x ph )  -> 
( E. x ph  ->  ph ) )
31, 2sylbi 121 . 2  |-  ( F/ x ph  ->  ( E. x ph  ->  ph )
)
4 19.8a 1636 . 2  |-  ( ph  ->  E. x ph )
53, 4impbid1 142 1  |-  ( F/ x ph  ->  ( E. x ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393   F/wnf 1506   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556
This theorem depends on definitions:  df-bi 117  df-nf 1507
This theorem is referenced by:  19.9d  1707  19.23t  1723  spimt  1782  exdistrfor  1846  sbequi  1885  sbft  1894  vtoclegft  2875  copsexg  4330
  Copyright terms: Public domain W3C validator