| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.9d | GIF version | ||
| Description: A deduction version of one direction of 19.9 1658. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| 19.9d.1 | ⊢ (𝜓 → Ⅎ𝑥𝜑) |
| Ref | Expression |
|---|---|
| 19.9d | ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.9d.1 | . . 3 ⊢ (𝜓 → Ⅎ𝑥𝜑) | |
| 2 | 19.9t 1656 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜓 → (∃𝑥𝜑 ↔ 𝜑)) |
| 4 | 3 | biimpd 144 | 1 ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |