ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9d GIF version

Theorem 19.9d 1640
Description: A deduction version of one direction of 19.9 1624. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.9d.1 (𝜓 → Ⅎ𝑥𝜑)
Assertion
Ref Expression
19.9d (𝜓 → (∃𝑥𝜑𝜑))

Proof of Theorem 19.9d
StepHypRef Expression
1 19.9d.1 . . 3 (𝜓 → Ⅎ𝑥𝜑)
2 19.9t 1622 . . 3 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
31, 2syl 14 . 2 (𝜓 → (∃𝑥𝜑𝜑))
43biimpd 143 1 (𝜓 → (∃𝑥𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wnf 1437  wex 1469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-4 1488
This theorem depends on definitions:  df-bi 116  df-nf 1438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator