ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anan32 Unicode version

Theorem 3anan32 989
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Assertion
Ref Expression
3anan32  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ch )  /\  ps )
)

Proof of Theorem 3anan32
StepHypRef Expression
1 df-3an 980 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
2 an32 562 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ph  /\  ch )  /\  ps ) )
31, 2bitri 184 1  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ch )  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  anandi3r  992  dff1o3  5459
  Copyright terms: Public domain W3C validator