ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anan12 Unicode version

Theorem 3anan12 980
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
3anan12  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ps  /\  ( ph  /\  ch ) ) )

Proof of Theorem 3anan12
StepHypRef Expression
1 3ancoma 975 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ps  /\  ph  /\ 
ch ) )
2 3anass 972 . 2  |-  ( ( ps  /\  ph  /\  ch )  <->  ( ps  /\  ( ph  /\  ch )
) )
31, 2bitri 183 1  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ps  /\  ( ph  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  fncnv  5254  dff1o2  5437
  Copyright terms: Public domain W3C validator