ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an32 Unicode version

Theorem an32 562
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.)
Assertion
Ref Expression
an32  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ph  /\  ch )  /\  ps ) )

Proof of Theorem an32
StepHypRef Expression
1 anass 401 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ph  /\  ( ps  /\  ch ) ) )
2 an12 561 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ps  /\  ( ph  /\  ch ) ) )
3 ancom 266 . 2  |-  ( ( ps  /\  ( ph  /\ 
ch ) )  <->  ( ( ph  /\  ch )  /\  ps ) )
41, 2, 33bitri 206 1  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ph  /\  ch )  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  an32s  568  3anan32  992  indifdir  3429  inrab2  3446  reupick  3457  unidif0  4211  resco  5187  f11o  5555  respreima  5708  dff1o6  5845  dfoprab2  5992  xpassen  6925  enq0enq  7544  elioomnf  10090  modfsummod  11769  pcqcl  12629  tx1cn  14741  isms2  14926  elcncf1di  15051
  Copyright terms: Public domain W3C validator