ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o3 Unicode version

Theorem dff1o3 5578
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o3  |-  ( F : A -1-1-onto-> B  <->  ( F : A -onto-> B  /\  Fun  `' F ) )

Proof of Theorem dff1o3
StepHypRef Expression
1 3anan32 1013 . 2  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  <->  ( ( F  Fn  A  /\  ran  F  =  B )  /\  Fun  `' F
) )
2 dff1o2 5577 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
3 df-fo 5324 . . 3  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
43anbi1i 458 . 2  |-  ( ( F : A -onto-> B  /\  Fun  `' F )  <-> 
( ( F  Fn  A  /\  ran  F  =  B )  /\  Fun  `' F ) )
51, 2, 43bitr4i 212 1  |-  ( F : A -1-1-onto-> B  <->  ( F : A -onto-> B  /\  Fun  `' F ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   `'ccnv 4718   ran crn 4720   Fun wfun 5312    Fn wfn 5313   -onto->wfo 5316   -1-1-onto->wf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325
This theorem is referenced by:  f1ofo  5579  resdif  5594  f11o  5605  f1opw  6213  1stconst  6367  2ndconst  6368  f1o2ndf1  6374  ssdomg  6930  phplem4  7016  phplem4on  7029
  Copyright terms: Public domain W3C validator