ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o3 Unicode version

Theorem dff1o3 5438
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o3  |-  ( F : A -1-1-onto-> B  <->  ( F : A -onto-> B  /\  Fun  `' F ) )

Proof of Theorem dff1o3
StepHypRef Expression
1 3anan32 979 . 2  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  <->  ( ( F  Fn  A  /\  ran  F  =  B )  /\  Fun  `' F
) )
2 dff1o2 5437 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
3 df-fo 5194 . . 3  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
43anbi1i 454 . 2  |-  ( ( F : A -onto-> B  /\  Fun  `' F )  <-> 
( ( F  Fn  A  /\  ran  F  =  B )  /\  Fun  `' F ) )
51, 2, 43bitr4i 211 1  |-  ( F : A -1-1-onto-> B  <->  ( F : A -onto-> B  /\  Fun  `' F ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343   `'ccnv 4603   ran crn 4605   Fun wfun 5182    Fn wfn 5183   -onto->wfo 5186   -1-1-onto->wf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  f1ofo  5439  resdif  5454  f11o  5465  f1opw  6045  1stconst  6189  2ndconst  6190  f1o2ndf1  6196  ssdomg  6744  phplem4  6821  phplem4on  6833
  Copyright terms: Public domain W3C validator