| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dff1o3 | Unicode version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan32 992 |
. 2
| |
| 2 | dff1o2 5549 |
. 2
| |
| 3 | df-fo 5296 |
. . 3
| |
| 4 | 3 | anbi1i 458 |
. 2
|
| 5 | 1, 2, 4 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 |
| This theorem is referenced by: f1ofo 5551 resdif 5566 f11o 5577 f1opw 6176 1stconst 6330 2ndconst 6331 f1o2ndf1 6337 ssdomg 6893 phplem4 6977 phplem4on 6990 |
| Copyright terms: Public domain | W3C validator |