ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o3 Unicode version

Theorem dff1o3 5513
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o3  |-  ( F : A -1-1-onto-> B  <->  ( F : A -onto-> B  /\  Fun  `' F ) )

Proof of Theorem dff1o3
StepHypRef Expression
1 3anan32 991 . 2  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  <->  ( ( F  Fn  A  /\  ran  F  =  B )  /\  Fun  `' F
) )
2 dff1o2 5512 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
3 df-fo 5265 . . 3  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
43anbi1i 458 . 2  |-  ( ( F : A -onto-> B  /\  Fun  `' F )  <-> 
( ( F  Fn  A  /\  ran  F  =  B )  /\  Fun  `' F ) )
51, 2, 43bitr4i 212 1  |-  ( F : A -1-1-onto-> B  <->  ( F : A -onto-> B  /\  Fun  `' F ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   `'ccnv 4663   ran crn 4665   Fun wfun 5253    Fn wfn 5254   -onto->wfo 5257   -1-1-onto->wf1o 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266
This theorem is referenced by:  f1ofo  5514  resdif  5529  f11o  5540  f1opw  6134  1stconst  6288  2ndconst  6289  f1o2ndf1  6295  ssdomg  6846  phplem4  6925  phplem4on  6937
  Copyright terms: Public domain W3C validator