ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imp231 Unicode version

Theorem 3imp231 1187
Description: Importation inference. (Contributed by Alan Sare, 17-Oct-2017.)
Hypothesis
Ref Expression
3imp31.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
3imp231  |-  ( ( ps  /\  ch  /\  ph )  ->  th )

Proof of Theorem 3imp231
StepHypRef Expression
1 3imp31.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21com3l 81 . 2  |-  ( ps 
->  ( ch  ->  ( ph  ->  th ) ) )
323imp 1183 1  |-  ( ( ps  /\  ch  /\  ph )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  3imp21  1188
  Copyright terms: Public domain W3C validator