| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imp | Unicode version | ||
| Description: Importation inference. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3imp.1 |
|
| Ref | Expression |
|---|---|
| 3imp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 983 |
. 2
| |
| 2 | 3imp.1 |
. . 3
| |
| 3 | 2 | imp31 256 |
. 2
|
| 4 | 1, 3 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3impa 1197 3imp31 1199 3imp231 1200 3impb 1202 3impia 1203 3impib 1204 3com23 1212 3an1rs 1222 3imp1 1223 3impd 1224 syl3an2 1284 syl3an3 1285 3jao 1314 biimp3ar 1359 poxp 6341 tfrlemibxssdm 6436 tfr1onlembxssdm 6452 tfrcllembxssdm 6465 nndi 6595 nnmass 6596 pr2nelem 7325 xnn0lenn0nn0 10022 difelfzle 10291 fzo1fzo0n0 10344 elfzo0z 10345 fzofzim 10349 elfzodifsumelfzo 10367 mulexp 10760 expadd 10763 expmul 10766 bernneq 10842 facdiv 10920 pfxfv 11175 swrdswrdlem 11195 pfxccat3 11225 reuccatpfxs1lem 11237 dvdsaddre2b 12267 addmodlteqALT 12285 ltoddhalfle 12319 halfleoddlt 12320 dfgcd2 12450 cncongr1 12540 oddprmgt2 12571 prmfac1 12589 infpnlem1 12797 dfgrp3me 13547 mulgaddcom 13597 mulginvcom 13598 fiinopn 14591 opnneissb 14742 blssps 15014 blss 15015 gausslemma2dlem1a 15650 2sqlem10 15717 |
| Copyright terms: Public domain | W3C validator |