| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imp | Unicode version | ||
| Description: Importation inference. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3imp.1 |
|
| Ref | Expression |
|---|---|
| 3imp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1004 |
. 2
| |
| 2 | 3imp.1 |
. . 3
| |
| 3 | 2 | imp31 256 |
. 2
|
| 4 | 1, 3 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3impa 1218 3imp31 1220 3imp231 1221 3impb 1223 3impia 1224 3impib 1225 3com23 1233 3an1rs 1243 3imp1 1244 3impd 1245 syl3an2 1305 syl3an3 1306 3jao 1335 biimp3ar 1380 poxp 6376 tfrlemibxssdm 6471 tfr1onlembxssdm 6487 tfrcllembxssdm 6500 nndi 6630 nnmass 6631 pr2nelem 7360 xnn0lenn0nn0 10057 difelfzle 10326 fzo1fzo0n0 10379 elfzo0z 10380 fzofzim 10384 elfzodifsumelfzo 10402 mulexp 10795 expadd 10798 expmul 10801 bernneq 10877 facdiv 10955 pfxfv 11211 swrdswrdlem 11231 pfxccat3 11261 reuccatpfxs1lem 11273 dvdsaddre2b 12347 addmodlteqALT 12365 ltoddhalfle 12399 halfleoddlt 12400 dfgcd2 12530 cncongr1 12620 oddprmgt2 12651 prmfac1 12669 infpnlem1 12877 dfgrp3me 13628 mulgaddcom 13678 mulginvcom 13679 fiinopn 14672 opnneissb 14823 blssps 15095 blss 15096 gausslemma2dlem1a 15731 2sqlem10 15798 ausgrumgrien 15962 ausgrusgrien 15963 ushgredgedg 16018 ushgredgedgloop 16020 |
| Copyright terms: Public domain | W3C validator |