![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imp | Unicode version |
Description: Importation inference. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3imp.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3imp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 982 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3imp.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | imp31 256 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | sylbi 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3impa 1196 3imp31 1198 3imp231 1199 3impb 1201 3impia 1202 3impib 1203 3com23 1211 3an1rs 1221 3imp1 1222 3impd 1223 syl3an2 1283 syl3an3 1284 3jao 1312 biimp3ar 1357 poxp 6287 tfrlemibxssdm 6382 tfr1onlembxssdm 6398 tfrcllembxssdm 6411 nndi 6541 nnmass 6542 pr2nelem 7253 xnn0lenn0nn0 9934 difelfzle 10203 fzo1fzo0n0 10253 elfzo0z 10254 fzofzim 10258 elfzodifsumelfzo 10271 mulexp 10652 expadd 10655 expmul 10658 bernneq 10734 facdiv 10812 dvdsaddre2b 11987 addmodlteqALT 12004 ltoddhalfle 12037 halfleoddlt 12038 dfgcd2 12154 cncongr1 12244 oddprmgt2 12275 prmfac1 12293 infpnlem1 12500 dfgrp3me 13175 mulgaddcom 13219 mulginvcom 13220 fiinopn 14183 opnneissb 14334 blssps 14606 blss 14607 gausslemma2dlem1a 15215 2sqlem10 15282 |
Copyright terms: Public domain | W3C validator |