| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imp | Unicode version | ||
| Description: Importation inference. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3imp.1 |
|
| Ref | Expression |
|---|---|
| 3imp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 983 |
. 2
| |
| 2 | 3imp.1 |
. . 3
| |
| 3 | 2 | imp31 256 |
. 2
|
| 4 | 1, 3 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3impa 1197 3imp31 1199 3imp231 1200 3impb 1202 3impia 1203 3impib 1204 3com23 1212 3an1rs 1222 3imp1 1223 3impd 1224 syl3an2 1284 syl3an3 1285 3jao 1314 biimp3ar 1359 poxp 6318 tfrlemibxssdm 6413 tfr1onlembxssdm 6429 tfrcllembxssdm 6442 nndi 6572 nnmass 6573 pr2nelem 7299 xnn0lenn0nn0 9987 difelfzle 10256 fzo1fzo0n0 10307 elfzo0z 10308 fzofzim 10312 elfzodifsumelfzo 10330 mulexp 10723 expadd 10726 expmul 10729 bernneq 10805 facdiv 10883 dvdsaddre2b 12152 addmodlteqALT 12170 ltoddhalfle 12204 halfleoddlt 12205 dfgcd2 12335 cncongr1 12425 oddprmgt2 12456 prmfac1 12474 infpnlem1 12682 dfgrp3me 13432 mulgaddcom 13482 mulginvcom 13483 fiinopn 14476 opnneissb 14627 blssps 14899 blss 14900 gausslemma2dlem1a 15535 2sqlem10 15602 |
| Copyright terms: Public domain | W3C validator |