Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imp | Unicode version |
Description: Importation inference. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3imp.1 |
Ref | Expression |
---|---|
3imp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 965 | . 2 | |
2 | 3imp.1 | . . 3 | |
3 | 2 | imp31 254 | . 2 |
4 | 1, 3 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: 3impa 1177 3impb 1178 3impia 1179 3impib 1180 3com23 1188 3an1rs 1198 3imp1 1199 3impd 1200 syl3an2 1251 syl3an3 1252 3jao 1280 biimp3ar 1325 poxp 6169 tfrlemibxssdm 6264 tfr1onlembxssdm 6280 tfrcllembxssdm 6293 nndi 6422 nnmass 6423 pr2nelem 7105 xnn0lenn0nn0 9747 difelfzle 10011 fzo1fzo0n0 10060 elfzo0z 10061 fzofzim 10065 elfzodifsumelfzo 10078 mulexp 10436 expadd 10439 expmul 10442 bernneq 10516 facdiv 10589 addmodlteqALT 11724 ltoddhalfle 11757 halfleoddlt 11758 dfgcd2 11869 cncongr1 11951 oddprmgt2 11981 prmfac1 11997 fiinopn 12341 opnneissb 12494 blssps 12766 blss 12767 |
Copyright terms: Public domain | W3C validator |