![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imp | Unicode version |
Description: Importation inference. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3imp.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3imp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 982 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3imp.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | imp31 256 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | sylbi 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3impa 1196 3imp31 1198 3imp231 1199 3impb 1201 3impia 1202 3impib 1203 3com23 1211 3an1rs 1221 3imp1 1222 3impd 1223 syl3an2 1283 syl3an3 1284 3jao 1312 biimp3ar 1357 poxp 6285 tfrlemibxssdm 6380 tfr1onlembxssdm 6396 tfrcllembxssdm 6409 nndi 6539 nnmass 6540 pr2nelem 7251 xnn0lenn0nn0 9931 difelfzle 10200 fzo1fzo0n0 10250 elfzo0z 10251 fzofzim 10255 elfzodifsumelfzo 10268 mulexp 10649 expadd 10652 expmul 10655 bernneq 10731 facdiv 10809 dvdsaddre2b 11984 addmodlteqALT 12001 ltoddhalfle 12034 halfleoddlt 12035 dfgcd2 12151 cncongr1 12241 oddprmgt2 12272 prmfac1 12290 infpnlem1 12497 dfgrp3me 13172 mulgaddcom 13216 mulginvcom 13217 fiinopn 14172 opnneissb 14323 blssps 14595 blss 14596 gausslemma2dlem1a 15174 2sqlem10 15212 |
Copyright terms: Public domain | W3C validator |