ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imp21 Unicode version

Theorem 3imp21 1188
Description: The importation inference 3imp 1183 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1197 by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
3imp31.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
3imp21  |-  ( ( ps  /\  ph  /\  ch )  ->  th )

Proof of Theorem 3imp21
StepHypRef Expression
1 3imp31.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21com13 80 . 2  |-  ( ch 
->  ( ps  ->  ( ph  ->  th ) ) )
323imp231 1187 1  |-  ( ( ps  /\  ph  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator