ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com3l Unicode version

Theorem com3l 81
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.)
Hypothesis
Ref Expression
com3.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
com3l  |-  ( ps 
->  ( ch  ->  ( ph  ->  th ) ) )

Proof of Theorem com3l
StepHypRef Expression
1 com3.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21com3r 79 . 2  |-  ( ch 
->  ( ph  ->  ( ps  ->  th ) ) )
32com3r 79 1  |-  ( ps 
->  ( ch  ->  ( ph  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  impd  252  3imp231  1192  expdcom  1435  nebidc  2420  sbcimdv  3020  prel12  3758  reusv3  4445  relcoi1  5142  oprabid  5885  poxp  6211  reldmtpos  6232  tfrlem9  6298  tfri3  6346  ordiso2  7012  distrlem5prl  7548  distrlem5pru  7549  bndndx  9134  uzind2  9324  leexp1a  10531  cncongr1  12057  infpnlem1  12311  bj-inf2vnlem2  14006
  Copyright terms: Public domain W3C validator