ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com3l Unicode version

Theorem com3l 81
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.)
Hypothesis
Ref Expression
com3.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
com3l  |-  ( ps 
->  ( ch  ->  ( ph  ->  th ) ) )

Proof of Theorem com3l
StepHypRef Expression
1 com3.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21com3r 79 . 2  |-  ( ch 
->  ( ph  ->  ( ps  ->  th ) ) )
32com3r 79 1  |-  ( ps 
->  ( ch  ->  ( ph  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  impd  254  3imp231  1197  expdcom  1442  nebidc  2427  sbcimdv  3030  prel12  3773  reusv3  4462  relcoi1  5162  oprabid  5909  poxp  6235  reldmtpos  6256  tfrlem9  6322  tfri3  6370  ordiso2  7036  distrlem5prl  7587  distrlem5pru  7588  bndndx  9177  uzind2  9367  leexp1a  10577  cncongr1  12105  infpnlem1  12359  bj-inf2vnlem2  14808
  Copyright terms: Public domain W3C validator