ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com3l Unicode version

Theorem com3l 81
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.)
Hypothesis
Ref Expression
com3.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
com3l  |-  ( ps 
->  ( ch  ->  ( ph  ->  th ) ) )

Proof of Theorem com3l
StepHypRef Expression
1 com3.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21com3r 79 . 2  |-  ( ch 
->  ( ph  ->  ( ps  ->  th ) ) )
32com3r 79 1  |-  ( ps 
->  ( ch  ->  ( ph  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  impd  254  3imp231  1200  expdcom  1463  nebidc  2457  sbcimdv  3068  prel12  3818  reusv3  4515  relcoi1  5223  oprabid  5989  poxp  6331  reldmtpos  6352  tfrlem9  6418  tfri3  6466  ordiso2  7152  distrlem5prl  7719  distrlem5pru  7720  bndndx  9314  uzind2  9505  leexp1a  10761  swrdswrdlem  11180  swrdswrd  11181  cncongr1  12500  infpnlem1  12757  gausslemma2dlem1a  15610  bj-inf2vnlem2  16045
  Copyright terms: Public domain W3C validator