ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com3l Unicode version

Theorem com3l 81
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.)
Hypothesis
Ref Expression
com3.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
com3l  |-  ( ps 
->  ( ch  ->  ( ph  ->  th ) ) )

Proof of Theorem com3l
StepHypRef Expression
1 com3.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21com3r 79 . 2  |-  ( ch 
->  ( ph  ->  ( ps  ->  th ) ) )
32com3r 79 1  |-  ( ps 
->  ( ch  ->  ( ph  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  impd  254  3imp231  1199  expdcom  1453  nebidc  2447  sbcimdv  3055  prel12  3802  reusv3  4496  relcoi1  5202  oprabid  5957  poxp  6299  reldmtpos  6320  tfrlem9  6386  tfri3  6434  ordiso2  7110  distrlem5prl  7670  distrlem5pru  7671  bndndx  9265  uzind2  9455  leexp1a  10703  cncongr1  12296  infpnlem1  12553  gausslemma2dlem1a  15383  bj-inf2vnlem2  15701
  Copyright terms: Public domain W3C validator