ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistand Unicode version

Theorem imdistand 444
Description: Distribution of implication with conjunction (deduction form). (Contributed by NM, 27-Aug-2004.)
Hypothesis
Ref Expression
imdistand.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
imdistand  |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( ps 
/\  th ) ) )

Proof of Theorem imdistand
StepHypRef Expression
1 imdistand.1 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
2 imdistan 441 . 2  |-  ( ( ps  ->  ( ch  ->  th ) )  <->  ( ( ps  /\  ch )  -> 
( ps  /\  th ) ) )
31, 2sylib 121 1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( ps 
/\  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  imdistanda  445  pm5.32d  446  a2and  548  fconstfvm  5703  lbzbi  9554
  Copyright terms: Public domain W3C validator