Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imdistand | Unicode version |
Description: Distribution of implication with conjunction (deduction form). (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
imdistand.1 |
Ref | Expression |
---|---|
imdistand |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistand.1 | . 2 | |
2 | imdistan 441 | . 2 | |
3 | 1, 2 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imdistanda 445 pm5.32d 446 a2and 548 fconstfvm 5703 lbzbi 9554 |
Copyright terms: Public domain | W3C validator |