| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expd | Unicode version | ||
| Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| exp3a.1 |
|
| Ref | Expression |
|---|---|
| expd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | 2 | ex 115 |
. 2
|
| 4 | 3 | com3r 79 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: expdimp 259 pm3.3 261 syland 293 exp32 365 exp4c 368 exp4d 369 exp42 371 exp44 373 exp5c 376 impl 380 mpan2d 428 a2and 558 pm2.6dc 863 3impib 1203 exp5o 1228 biassdc 1406 exbir 1447 expcomd 1452 expdcom 1453 mopick 2123 ralrimivv 2578 mob2 2944 reuind 2969 difin 3401 reupick3 3449 suctr 4457 tfisi 4624 relop 4817 funcnvuni 5328 fnun 5367 mpteqb 5655 funfvima 5797 poxp 6299 nnmass 6554 supisoti 7085 axprecex 7964 ltnsym 8129 nn0lt2 9424 fzind 9458 fnn0ind 9459 btwnz 9462 lbzbi 9707 ledivge1le 9818 elfz0ubfz0 10217 elfzo0z 10277 fzofzim 10281 flqeqceilz 10427 leexp2r 10702 bernneq 10769 cau3lem 11296 climuni 11475 mulcn2 11494 dvdsabseq 12029 ndvdssub 12112 bezoutlemmain 12190 rplpwr 12219 algcvgblem 12242 euclemma 12339 insubm 13187 grpinveu 13240 srgmulgass 13621 basis2 14368 txcnp 14591 metcnp3 14831 gausslemma2dlem3 15388 bj-charfunr 15540 |
| Copyright terms: Public domain | W3C validator |