| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expd | Unicode version | ||
| Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| exp3a.1 |
|
| Ref | Expression |
|---|---|
| expd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | 2 | ex 115 |
. 2
|
| 4 | 3 | com3r 79 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: expdimp 259 pm3.3 261 syland 293 exp32 365 exp4c 368 exp4d 369 exp42 371 exp44 373 exp5c 376 impl 380 mpan2d 428 a2and 558 pm2.6dc 867 3impib 1225 exp5o 1250 biassdc 1437 exbir 1479 expcomd 1484 expdcom 1485 mopick 2156 ralrimivv 2611 mob2 2983 reuind 3008 difin 3441 reupick3 3489 suctr 4511 tfisi 4678 relop 4871 funcnvuni 5389 fnun 5428 mpteqb 5724 funfvima 5870 riotaeqimp 5978 poxp 6376 nnmass 6631 rex2dom 6969 supisoti 7173 axprecex 8063 ltnsym 8228 nn0lt2 9524 fzind 9558 fnn0ind 9559 btwnz 9562 lbzbi 9807 ledivge1le 9918 elfz0ubfz0 10317 elfzo0z 10380 fzofzim 10384 flqeqceilz 10535 leexp2r 10810 bernneq 10877 swrdswrdlem 11231 swrdswrd 11232 wrd2ind 11250 swrdccatin1 11252 swrdccatin2 11256 pfxccatin12lem3 11259 cau3lem 11620 climuni 11799 mulcn2 11818 dvdsabseq 12353 ndvdssub 12436 bezoutlemmain 12514 rplpwr 12543 algcvgblem 12566 euclemma 12663 insubm 13513 grpinveu 13566 srgmulgass 13947 basis2 14716 txcnp 14939 metcnp3 15179 gausslemma2dlem3 15736 bj-charfunr 16131 |
| Copyright terms: Public domain | W3C validator |