| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expd | Unicode version | ||
| Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| exp3a.1 |
|
| Ref | Expression |
|---|---|
| expd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | 2 | ex 115 |
. 2
|
| 4 | 3 | com3r 79 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: expdimp 259 pm3.3 261 syland 293 exp32 365 exp4c 368 exp4d 369 exp42 371 exp44 373 exp5c 376 impl 380 mpan2d 428 a2and 558 pm2.6dc 864 3impib 1204 exp5o 1229 biassdc 1415 exbir 1457 expcomd 1462 expdcom 1463 mopick 2133 ralrimivv 2588 mob2 2957 reuind 2982 difin 3414 reupick3 3462 suctr 4476 tfisi 4643 relop 4836 funcnvuni 5352 fnun 5391 mpteqb 5683 funfvima 5829 poxp 6331 nnmass 6586 rex2dom 6924 supisoti 7127 axprecex 8013 ltnsym 8178 nn0lt2 9474 fzind 9508 fnn0ind 9509 btwnz 9512 lbzbi 9757 ledivge1le 9868 elfz0ubfz0 10267 elfzo0z 10330 fzofzim 10334 flqeqceilz 10485 leexp2r 10760 bernneq 10827 swrdswrdlem 11180 swrdswrd 11181 wrd2ind 11199 cau3lem 11500 climuni 11679 mulcn2 11698 dvdsabseq 12233 ndvdssub 12316 bezoutlemmain 12394 rplpwr 12423 algcvgblem 12446 euclemma 12543 insubm 13392 grpinveu 13445 srgmulgass 13826 basis2 14595 txcnp 14818 metcnp3 15058 gausslemma2dlem3 15615 bj-charfunr 15884 |
| Copyright terms: Public domain | W3C validator |