| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expd | Unicode version | ||
| Description: Exportation deduction. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| exp3a.1 |
|
| Ref | Expression |
|---|---|
| expd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | 2 | ex 115 |
. 2
|
| 4 | 3 | com3r 79 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: expdimp 259 pm3.3 261 syland 293 exp32 365 exp4c 368 exp4d 369 exp42 371 exp44 373 exp5c 376 impl 380 mpan2d 428 a2and 558 pm2.6dc 863 3impib 1203 exp5o 1228 biassdc 1414 exbir 1455 expcomd 1460 expdcom 1461 mopick 2131 ralrimivv 2586 mob2 2952 reuind 2977 difin 3409 reupick3 3457 suctr 4467 tfisi 4634 relop 4827 funcnvuni 5342 fnun 5381 mpteqb 5669 funfvima 5815 poxp 6317 nnmass 6572 rex2dom 6909 supisoti 7111 axprecex 7992 ltnsym 8157 nn0lt2 9453 fzind 9487 fnn0ind 9488 btwnz 9491 lbzbi 9736 ledivge1le 9847 elfz0ubfz0 10246 elfzo0z 10306 fzofzim 10310 flqeqceilz 10461 leexp2r 10736 bernneq 10803 cau3lem 11396 climuni 11575 mulcn2 11594 dvdsabseq 12129 ndvdssub 12212 bezoutlemmain 12290 rplpwr 12319 algcvgblem 12342 euclemma 12439 insubm 13288 grpinveu 13341 srgmulgass 13722 basis2 14491 txcnp 14714 metcnp3 14954 gausslemma2dlem3 15511 bj-charfunr 15708 |
| Copyright terms: Public domain | W3C validator |