ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  embantd Unicode version

Theorem embantd 56
Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.)
Hypotheses
Ref Expression
embantd.1  |-  ( ph  ->  ps )
embantd.2  |-  ( ph  ->  ( ch  ->  th )
)
Assertion
Ref Expression
embantd  |-  ( ph  ->  ( ( ps  ->  ch )  ->  th )
)

Proof of Theorem embantd
StepHypRef Expression
1 embantd.1 . 2  |-  ( ph  ->  ps )
2 embantd.2 . . 3  |-  ( ph  ->  ( ch  ->  th )
)
32imim2d 54 . 2  |-  ( ph  ->  ( ( ps  ->  ch )  ->  ( ps  ->  th ) ) )
41, 3mpid 42 1  |-  ( ph  ->  ( ( ps  ->  ch )  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  a2and  553  el  4162  findcard2d  6867  findcard2sd  6868  exprmfct  12085  sqrt2irr  12109  pockthg  12302  iscnp4  12977  2sqlem6  13715  bj-exlimmp  13769
  Copyright terms: Public domain W3C validator