ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  animpimp2impd Unicode version

Theorem animpimp2impd 554
Description: Deduction deriving nested implications from conjunctions. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
animpimp2impd.1  |-  ( ( ps  /\  ph )  ->  ( ch  ->  ( th  ->  et ) ) )
animpimp2impd.2  |-  ( ( ps  /\  ( ph  /\ 
th ) )  -> 
( et  ->  ta ) )
Assertion
Ref Expression
animpimp2impd  |-  ( ph  ->  ( ( ps  ->  ch )  ->  ( ps  ->  ( th  ->  ta ) ) ) )

Proof of Theorem animpimp2impd
StepHypRef Expression
1 animpimp2impd.1 . . . 4  |-  ( ( ps  /\  ph )  ->  ( ch  ->  ( th  ->  et ) ) )
2 animpimp2impd.2 . . . . . 6  |-  ( ( ps  /\  ( ph  /\ 
th ) )  -> 
( et  ->  ta ) )
32expr 373 . . . . 5  |-  ( ( ps  /\  ph )  ->  ( th  ->  ( et  ->  ta ) ) )
43a2d 26 . . . 4  |-  ( ( ps  /\  ph )  ->  ( ( th  ->  et )  ->  ( th  ->  ta ) ) )
51, 4syld 45 . . 3  |-  ( ( ps  /\  ph )  ->  ( ch  ->  ( th  ->  ta ) ) )
65expcom 115 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
76a2d 26 1  |-  ( ph  ->  ( ( ps  ->  ch )  ->  ( ps  ->  ( th  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  seq3fveq2  10425  seq3shft2  10429  seq3split  10435  seq3id2  10465
  Copyright terms: Public domain W3C validator