ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anidmdbi Unicode version

Theorem anidmdbi 393
Description: Conjunction idempotence with antecedent. (Contributed by Roy F. Longton, 8-Aug-2005.)
Assertion
Ref Expression
anidmdbi  |-  ( (
ph  ->  ( ps  /\  ps ) )  <->  ( ph  ->  ps ) )

Proof of Theorem anidmdbi
StepHypRef Expression
1 anidm 391 . 2  |-  ( ( ps  /\  ps )  <->  ps )
21imbi2i 225 1  |-  ( (
ph  ->  ( ps  /\  ps ) )  <->  ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator