ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anidm Unicode version

Theorem anidm 396
Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.)
Assertion
Ref Expression
anidm  |-  ( (
ph  /\  ph )  <->  ph )

Proof of Theorem anidm
StepHypRef Expression
1 pm4.24 395 . 2  |-  ( ph  <->  (
ph  /\  ph ) )
21bicomi 132 1  |-  ( (
ph  /\  ph )  <->  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  anidmdbi  398  anandi  590  anandir  591  truantru  1401  falanfal  1404  truxortru  1419  truxorfal  1420  falxortru  1421  falxorfal  1422  sbnf2  1981  2eu4  2119  inidm  3346  ralidm  3525  opcom  4252  opeqsn  4254  poirr  4309  rnxpid  5065  xp11m  5069  fununi  5286  brprcneu  5510  erinxp  6611  dom2lem  6774  dmaddpi  7326  dmmulpi  7327  enq0ref  7434  enq0tr  7435  expap0  10552  sqap0  10589  xrmaxiflemcom  11259  gcddvds  11966  isnsg2  13068  eqger  13088  xmeter  13975
  Copyright terms: Public domain W3C validator