| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidm | Unicode version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 395 |
. 2
| |
| 2 | 1 | bicomi 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anidmdbi 398 anandi 592 anandir 593 truantru 1443 falanfal 1446 truxortru 1461 truxorfal 1462 falxortru 1463 falxorfal 1464 sbnf2 2032 2eu4 2171 inidm 3413 ralidm 3592 opcom 4337 opeqsn 4339 poirr 4398 rnxpid 5163 xp11m 5167 fununi 5389 brprcneu 5620 erinxp 6756 dom2lem 6923 dmaddpi 7512 dmmulpi 7513 enq0ref 7620 enq0tr 7621 expap0 10791 sqap0 10828 xrmaxiflemcom 11760 gcddvds 12484 isnsg2 13740 eqger 13761 xmeter 15110 |
| Copyright terms: Public domain | W3C validator |