| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidm | Unicode version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 395 |
. 2
| |
| 2 | 1 | bicomi 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anidmdbi 398 anandi 590 anandir 591 truantru 1421 falanfal 1424 truxortru 1439 truxorfal 1440 falxortru 1441 falxorfal 1442 sbnf2 2009 2eu4 2147 inidm 3382 ralidm 3561 opcom 4296 opeqsn 4298 poirr 4355 rnxpid 5118 xp11m 5122 fununi 5343 brprcneu 5571 erinxp 6698 dom2lem 6865 dmaddpi 7440 dmmulpi 7441 enq0ref 7548 enq0tr 7549 expap0 10716 sqap0 10753 xrmaxiflemcom 11593 gcddvds 12317 isnsg2 13572 eqger 13593 xmeter 14941 |
| Copyright terms: Public domain | W3C validator |