![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anidm | Unicode version |
Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 395 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 132 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anidmdbi 398 anandi 590 anandir 591 truantru 1412 falanfal 1415 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 sbnf2 1997 2eu4 2135 inidm 3368 ralidm 3547 opcom 4279 opeqsn 4281 poirr 4338 rnxpid 5100 xp11m 5104 fununi 5322 brprcneu 5547 erinxp 6663 dom2lem 6826 dmaddpi 7385 dmmulpi 7386 enq0ref 7493 enq0tr 7494 expap0 10640 sqap0 10677 xrmaxiflemcom 11392 gcddvds 12100 isnsg2 13273 eqger 13294 xmeter 14604 |
Copyright terms: Public domain | W3C validator |