![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anidm | Unicode version |
Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 395 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 132 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anidmdbi 398 anandi 590 anandir 591 truantru 1401 falanfal 1404 truxortru 1419 truxorfal 1420 falxortru 1421 falxorfal 1422 sbnf2 1981 2eu4 2119 inidm 3346 ralidm 3525 opcom 4252 opeqsn 4254 poirr 4309 rnxpid 5065 xp11m 5069 fununi 5286 brprcneu 5510 erinxp 6611 dom2lem 6774 dmaddpi 7326 dmmulpi 7327 enq0ref 7434 enq0tr 7435 expap0 10552 sqap0 10589 xrmaxiflemcom 11259 gcddvds 11966 isnsg2 13068 eqger 13088 xmeter 13975 |
Copyright terms: Public domain | W3C validator |