| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anasss | Unicode version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| anasss.1 |
|
| Ref | Expression |
|---|---|
| anasss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anasss.1 |
. . 3
| |
| 2 | 1 | exp31 364 |
. 2
|
| 3 | 2 | imp32 257 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: anass 401 anabss3 585 biadanid 614 wepo 4407 wetrep 4408 fvun1 5647 f1elima 5844 caovimo 6142 supisoti 7114 prarloc 7618 reapmul1 8670 ltmul12a 8935 peano5uzti 9483 eluzp1m1 9674 lbzbi 9739 qreccl 9765 xrlttr 9919 xrltso 9920 elfzodifsumelfzo 10332 mertensabs 11881 ndvdsadd 12275 nn0seqcvgd 12396 isprm3 12473 ennnfonelemim 12828 prdsval 13138 grppropd 13382 ghmcmn 13696 neissex 14670 lgsval3 15528 |
| Copyright terms: Public domain | W3C validator |