| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anasss | Unicode version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| anasss.1 |
|
| Ref | Expression |
|---|---|
| anasss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anasss.1 |
. . 3
| |
| 2 | 1 | exp31 364 |
. 2
|
| 3 | 2 | imp32 257 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: anass 401 anabss3 585 biadanid 614 wepo 4424 wetrep 4425 fvun1 5668 f1elima 5865 caovimo 6163 supisoti 7138 prarloc 7651 reapmul1 8703 ltmul12a 8968 peano5uzti 9516 eluzp1m1 9707 lbzbi 9772 qreccl 9798 xrlttr 9952 xrltso 9953 elfzodifsumelfzo 10367 mertensabs 11963 ndvdsadd 12357 nn0seqcvgd 12478 isprm3 12555 ennnfonelemim 12910 prdsval 13220 grppropd 13464 ghmcmn 13778 neissex 14752 lgsval3 15610 |
| Copyright terms: Public domain | W3C validator |