| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anasss | Unicode version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| anasss.1 |
|
| Ref | Expression |
|---|---|
| anasss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anasss.1 |
. . 3
| |
| 2 | 1 | exp31 364 |
. 2
|
| 3 | 2 | imp32 257 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: anass 401 anabss3 585 biadanid 616 wepo 4450 wetrep 4451 fvun1 5700 f1elima 5897 caovimo 6199 supisoti 7177 prarloc 7690 reapmul1 8742 ltmul12a 9007 peano5uzti 9555 eluzp1m1 9746 lbzbi 9811 qreccl 9837 xrlttr 9991 xrltso 9992 elfzodifsumelfzo 10407 mertensabs 12048 ndvdsadd 12442 nn0seqcvgd 12563 isprm3 12640 ennnfonelemim 12995 prdsval 13306 grppropd 13550 ghmcmn 13864 neissex 14839 lgsval3 15697 |
| Copyright terms: Public domain | W3C validator |