| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anasss | Unicode version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| anasss.1 |
|
| Ref | Expression |
|---|---|
| anasss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anasss.1 |
. . 3
| |
| 2 | 1 | exp31 364 |
. 2
|
| 3 | 2 | imp32 257 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: anass 401 anabss3 585 biadanid 614 wepo 4406 wetrep 4407 fvun1 5645 f1elima 5842 caovimo 6140 supisoti 7112 prarloc 7616 reapmul1 8668 ltmul12a 8933 peano5uzti 9481 eluzp1m1 9672 lbzbi 9737 qreccl 9763 xrlttr 9917 xrltso 9918 elfzodifsumelfzo 10330 mertensabs 11848 ndvdsadd 12242 nn0seqcvgd 12363 isprm3 12440 ennnfonelemim 12795 prdsval 13105 grppropd 13349 ghmcmn 13663 neissex 14637 lgsval3 15495 |
| Copyright terms: Public domain | W3C validator |