ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anasss Unicode version

Theorem anasss 399
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
anasss.1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Assertion
Ref Expression
anasss  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )

Proof of Theorem anasss
StepHypRef Expression
1 anasss.1 . . 3  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
21exp31 364 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32imp32 257 1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  anass  401  anabss3  585  biadanid  614  wepo  4395  wetrep  4396  fvun1  5630  f1elima  5823  caovimo  6121  supisoti  7085  prarloc  7587  reapmul1  8639  ltmul12a  8904  peano5uzti  9451  eluzp1m1  9642  lbzbi  9707  qreccl  9733  xrlttr  9887  xrltso  9888  elfzodifsumelfzo  10294  mertensabs  11719  ndvdsadd  12113  nn0seqcvgd  12234  isprm3  12311  ennnfonelemim  12666  prdsval  12975  grppropd  13219  ghmcmn  13533  neissex  14485  lgsval3  15343
  Copyright terms: Public domain W3C validator