| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anasss | Unicode version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| anasss.1 |
|
| Ref | Expression |
|---|---|
| anasss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anasss.1 |
. . 3
| |
| 2 | 1 | exp31 364 |
. 2
|
| 3 | 2 | imp32 257 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: anass 401 anabss3 585 biadanid 614 wepo 4395 wetrep 4396 fvun1 5628 f1elima 5821 caovimo 6118 supisoti 7077 prarloc 7572 reapmul1 8624 ltmul12a 8889 peano5uzti 9436 eluzp1m1 9627 lbzbi 9692 qreccl 9718 xrlttr 9872 xrltso 9873 elfzodifsumelfzo 10279 mertensabs 11704 ndvdsadd 12098 nn0seqcvgd 12219 isprm3 12296 ennnfonelemim 12651 grppropd 13159 ghmcmn 13467 neissex 14411 lgsval3 15269 |
| Copyright terms: Public domain | W3C validator |