| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > anasss | Unicode version | ||
| Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) | 
| Ref | Expression | 
|---|---|
| anasss.1 | 
 | 
| Ref | Expression | 
|---|---|
| anasss | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anasss.1 | 
. . 3
 | |
| 2 | 1 | exp31 364 | 
. 2
 | 
| 3 | 2 | imp32 257 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: anass 401 anabss3 585 biadanid 614 wepo 4394 wetrep 4395 fvun1 5627 f1elima 5820 caovimo 6117 supisoti 7076 prarloc 7570 reapmul1 8622 ltmul12a 8887 peano5uzti 9434 eluzp1m1 9625 lbzbi 9690 qreccl 9716 xrlttr 9870 xrltso 9871 elfzodifsumelfzo 10277 mertensabs 11702 ndvdsadd 12096 nn0seqcvgd 12209 isprm3 12286 ennnfonelemim 12641 grppropd 13149 ghmcmn 13457 neissex 14401 lgsval3 15259 | 
| Copyright terms: Public domain | W3C validator |