| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi2i | Unicode version | ||
| Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
| Ref | Expression |
|---|---|
| bi.a |
|
| Ref | Expression |
|---|---|
| imbi2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.a |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | pm5.74i 180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 anidmdbi 398 nan 694 sbcof2 1833 sblimv 1918 sbhb 1968 sblim 1985 2sb6 2012 sbcom2v 2013 2sb6rf 2018 eu1 2079 moabs 2103 mo3h 2107 moanim 2128 2moswapdc 2144 r2alf 2523 r19.21t 2581 rspc2gv 2889 reu2 2961 reu8 2969 2reuswapdc 2977 2rmorex 2979 dfdif3 3283 ssconb 3306 ssin 3395 reldisj 3512 ssundifim 3544 ralm 3564 unissb 3880 repizf2lem 4205 elirr 4589 en2lp 4602 tfi 4630 ssrel 4763 ssrel2 4765 fncnv 5340 fun11 5341 axcaucvglemres 8012 axpre-suploc 8015 suprzclex 9471 raluz2 9700 supinfneg 9716 infsupneg 9717 infssuzex 10376 bezoutlemmain 12319 isprm2 12439 lmres 14720 ivthdich 15125 limcdifap 15134 |
| Copyright terms: Public domain | W3C validator |