![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi2i | Unicode version |
Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
Ref | Expression |
---|---|
bi.a |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imbi2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.a |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm5.74i 179 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imbi12i 238 anidmdbi 393 nan 664 sbcof2 1762 sblimv 1846 sbhb 1889 sblim 1904 2sb6 1933 sbcom2v 1934 2sb6rf 1939 eu1 1998 moabs 2022 mo3h 2026 moanim 2047 2moswapdc 2063 r2alf 2424 r19.21t 2479 rspc2gv 2769 reu2 2839 reu8 2847 2reuswapdc 2855 2rmorex 2857 dfdif3 3150 ssconb 3173 ssin 3262 reldisj 3378 ssundifim 3410 ralm 3431 unissb 3730 repizf2lem 4043 elirr 4414 en2lp 4427 tfi 4454 ssrel 4585 ssrel2 4587 fncnv 5145 fun11 5146 axcaucvglemres 7628 suprzclex 9047 raluz2 9270 supinfneg 9286 infsupneg 9287 infssuzex 11484 bezoutlemmain 11526 isprm2 11638 lmres 12253 limcdifap 12581 |
Copyright terms: Public domain | W3C validator |