| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi2i | Unicode version | ||
| Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
| Ref | Expression |
|---|---|
| bi.a |
|
| Ref | Expression |
|---|---|
| imbi2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.a |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | pm5.74i 180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 anidmdbi 398 nan 694 sbcof2 1834 sblimv 1919 sbhb 1969 sblim 1986 2sb6 2013 sbcom2v 2014 2sb6rf 2019 eu1 2080 moabs 2105 mo3h 2109 moanim 2130 2moswapdc 2146 r2alf 2525 r19.21t 2583 rspc2gv 2896 reu2 2968 reu8 2976 2reuswapdc 2984 2rmorex 2986 dfdif3 3291 ssconb 3314 ssin 3403 reldisj 3520 ssundifim 3552 ralm 3572 unissb 3894 repizf2lem 4221 elirr 4607 en2lp 4620 tfi 4648 ssrel 4781 ssrel2 4783 fncnv 5359 fun11 5360 axcaucvglemres 8047 axpre-suploc 8050 suprzclex 9506 raluz2 9735 supinfneg 9751 infsupneg 9752 infssuzex 10413 bezoutlemmain 12434 isprm2 12554 lmres 14835 ivthdich 15240 limcdifap 15249 |
| Copyright terms: Public domain | W3C validator |