| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imbi2i | Unicode version | ||
| Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) | 
| Ref | Expression | 
|---|---|
| bi.a | 
 | 
| Ref | Expression | 
|---|---|
| imbi2i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bi.a | 
. . 3
 | |
| 2 | 1 | a1i 9 | 
. 2
 | 
| 3 | 2 | pm5.74i 180 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: imbi12i 239 anidmdbi 398 nan 693 sbcof2 1824 sblimv 1909 sbhb 1959 sblim 1976 2sb6 2003 sbcom2v 2004 2sb6rf 2009 eu1 2070 moabs 2094 mo3h 2098 moanim 2119 2moswapdc 2135 r2alf 2514 r19.21t 2572 rspc2gv 2880 reu2 2952 reu8 2960 2reuswapdc 2968 2rmorex 2970 dfdif3 3273 ssconb 3296 ssin 3385 reldisj 3502 ssundifim 3534 ralm 3554 unissb 3869 repizf2lem 4194 elirr 4577 en2lp 4590 tfi 4618 ssrel 4751 ssrel2 4753 fncnv 5324 fun11 5325 axcaucvglemres 7966 axpre-suploc 7969 suprzclex 9424 raluz2 9653 supinfneg 9669 infsupneg 9670 infssuzex 10323 bezoutlemmain 12165 isprm2 12285 lmres 14484 ivthdich 14889 limcdifap 14898 | 
| Copyright terms: Public domain | W3C validator |