| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi2i | Unicode version | ||
| Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
| Ref | Expression |
|---|---|
| bi.a |
|
| Ref | Expression |
|---|---|
| imbi2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.a |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | pm5.74i 180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 anidmdbi 398 nan 694 sbcof2 1833 sblimv 1918 sbhb 1968 sblim 1985 2sb6 2012 sbcom2v 2013 2sb6rf 2018 eu1 2079 moabs 2103 mo3h 2107 moanim 2128 2moswapdc 2144 r2alf 2523 r19.21t 2581 rspc2gv 2889 reu2 2961 reu8 2969 2reuswapdc 2977 2rmorex 2979 dfdif3 3283 ssconb 3306 ssin 3395 reldisj 3512 ssundifim 3544 ralm 3564 unissb 3880 repizf2lem 4206 elirr 4590 en2lp 4603 tfi 4631 ssrel 4764 ssrel2 4766 fncnv 5341 fun11 5342 axcaucvglemres 8014 axpre-suploc 8017 suprzclex 9473 raluz2 9702 supinfneg 9718 infsupneg 9719 infssuzex 10378 bezoutlemmain 12352 isprm2 12472 lmres 14753 ivthdich 15158 limcdifap 15167 |
| Copyright terms: Public domain | W3C validator |