![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi2i | Unicode version |
Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
Ref | Expression |
---|---|
bi.a |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imbi2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.a |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm5.74i 180 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imbi12i 239 anidmdbi 398 nan 692 sbcof2 1810 sblimv 1894 sbhb 1940 sblim 1957 2sb6 1984 sbcom2v 1985 2sb6rf 1990 eu1 2051 moabs 2075 mo3h 2079 moanim 2100 2moswapdc 2116 r2alf 2494 r19.21t 2552 rspc2gv 2855 reu2 2927 reu8 2935 2reuswapdc 2943 2rmorex 2945 dfdif3 3247 ssconb 3270 ssin 3359 reldisj 3476 ssundifim 3508 ralm 3529 unissb 3841 repizf2lem 4163 elirr 4542 en2lp 4555 tfi 4583 ssrel 4716 ssrel2 4718 fncnv 5284 fun11 5285 axcaucvglemres 7900 axpre-suploc 7903 suprzclex 9353 raluz2 9581 supinfneg 9597 infsupneg 9598 infssuzex 11952 bezoutlemmain 12001 isprm2 12119 lmres 13787 limcdifap 14170 |
Copyright terms: Public domain | W3C validator |