ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft2 Unicode version

Theorem seq3shft2 10573
Description: Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
Hypotheses
Ref Expression
seq3shft2.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3shft2.2  |-  ( ph  ->  K  e.  ZZ )
seq3shft2.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  ( k  +  K ) ) )
seq3shft2.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3shft2.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( G `  x )  e.  S
)
seq3shft2.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3shft2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( N  +  K ) ) )
Distinct variable groups:    x,  .+ , y    k, F, x    y, F   
k, G, x    y, G    k, K, x    y, K    k, M, x    y, M    k, N, x    y, N    x, S, y    ph, k, x    ph, y
Allowed substitution hints:    .+ ( k)    S( k)

Proof of Theorem seq3shft2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seq3shft2.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10107 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2259 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5558 . . . . . . 7  |-  ( x  =  M  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  M
) )
6 fvoveq1 5945 . . . . . . 7  |-  ( x  =  M  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( M  +  K )
) )
75, 6eqeq12d 2211 . . . . . 6  |-  ( x  =  M  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) )
84, 7imbi12d 234 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( M  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) ) )
98imbi2d 230 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) ) ) )
10 eleq1 2259 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
11 fveq2 5558 . . . . . . 7  |-  ( x  =  n  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  n
) )
12 fvoveq1 5945 . . . . . . 7  |-  ( x  =  n  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )
1311, 12eqeq12d 2211 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) )
1410, 13imbi12d 234 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( n  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) ) )
1514imbi2d 230 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) ) ) )
16 eleq1 2259 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
17 fveq2 5558 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
18 fvoveq1 5945 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) )
1917, 18eqeq12d 2211 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) )
2016, 19imbi12d 234 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) ) )
2120imbi2d 230 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) ) ) )
22 eleq1 2259 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
23 fveq2 5558 . . . . . . 7  |-  ( x  =  N  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  N
) )
24 fvoveq1 5945 . . . . . . 7  |-  ( x  =  N  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( N  +  K )
) )
2523, 24eqeq12d 2211 . . . . . 6  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) )
2622, 25imbi12d 234 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) )
2726imbi2d 230 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) ) )
28 fveq2 5558 . . . . . . . 8  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
29 fvoveq1 5945 . . . . . . . 8  |-  ( k  =  M  ->  ( G `  ( k  +  K ) )  =  ( G `  ( M  +  K )
) )
3028, 29eqeq12d 2211 . . . . . . 7  |-  ( k  =  M  ->  (
( F `  k
)  =  ( G `
 ( k  +  K ) )  <->  ( F `  M )  =  ( G `  ( M  +  K ) ) ) )
31 seq3shft2.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  ( k  +  K ) ) )
3231ralrimiva 2570 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  =  ( G `
 ( k  +  K ) ) )
33 eluzfz1 10106 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
341, 33syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
3530, 32, 34rspcdva 2873 . . . . . 6  |-  ( ph  ->  ( F `  M
)  =  ( G `
 ( M  +  K ) ) )
36 eluzel2 9606 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
371, 36syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
38 seq3shft2.f . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
39 seq3shft2.pl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
4037, 38, 39seq3-1 10554 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
41 seq3shft2.2 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
4237, 41zaddcld 9452 . . . . . . 7  |-  ( ph  ->  ( M  +  K
)  e.  ZZ )
43 seq3shft2.g . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( G `  x )  e.  S
)
4442, 43, 39seq3-1 10554 . . . . . 6  |-  ( ph  ->  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( M  +  K ) )  =  ( G `  ( M  +  K )
) )
4535, 40, 443eqtr4d 2239 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( M  +  K ) ) )
4645a1i13 24 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  M
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( M  +  K )
) ) ) )
47 peano2fzr 10112 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
4847adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
4948expr 375 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
5049imim1d 75 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )  ->  (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) ) ) )
51 oveq1 5929 . . . . . 6  |-  ( (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) )  .+  ( F `  ( n  +  1 ) ) ) )
52 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
5338adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) ) )  /\  x  e.  (
ZZ>= `  M ) )  ->  ( F `  x )  e.  S
)
5439adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
5552, 53, 54seq3p1 10557 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5641adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  K  e.  ZZ )
57 eluzadd 9630 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
n  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
5852, 56, 57syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  K )  e.  (
ZZ>= `  ( M  +  K ) ) )
5943adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) ) )  /\  x  e.  (
ZZ>= `  ( M  +  K ) ) )  ->  ( G `  x )  e.  S
)
6058, 59, 54seq3p1 10557 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  K
)  +  1 ) )  =  ( (  seq ( M  +  K ) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( G `
 ( ( n  +  K )  +  1 ) ) ) )
61 eluzelz 9610 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
6252, 61syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ZZ )
6362zcnd 9449 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  CC )
64 1cnd 8042 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  1  e.  CC )
6556zcnd 9449 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  K  e.  CC )
6663, 64, 65add32d 8194 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
n  +  1 )  +  K )  =  ( ( n  +  K )  +  1 ) )
6766fveq2d 5562 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  K
)  +  1 ) ) )
68 fveq2 5558 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
69 fvoveq1 5945 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( G `  ( k  +  K ) )  =  ( G `  (
( n  +  1 )  +  K ) ) )
7068, 69eqeq12d 2211 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  =  ( G `
 ( k  +  K ) )  <->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  1 )  +  K ) ) ) )
7132adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  =  ( G `  ( k  +  K ) ) )
72 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
7370, 71, 72rspcdva 2873 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  1 )  +  K ) ) )
7466fveq2d 5562 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( G `  ( ( n  + 
1 )  +  K
) )  =  ( G `  ( ( n  +  K )  +  1 ) ) )
7573, 74eqtrd 2229 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  K )  +  1 ) ) )
7675oveq2d 5938 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( F `
 ( n  + 
1 ) ) )  =  ( (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( G `
 ( ( n  +  K )  +  1 ) ) ) )
7760, 67, 763eqtr4d 2239 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  =  ( (  seq ( M  +  K ) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( F `
 ( n  + 
1 ) ) ) )
7855, 77eqeq12d 2211 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  <->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) )  .+  ( F `  ( n  +  1 ) ) ) ) )
7951, 78imbitrrid 156 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) )
8050, 79animpimp2impd 559 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) ) )  -> 
( ph  ->  ( ( n  +  1 )  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) ) ) )
819, 15, 21, 27, 46, 80uzind4 9662 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) )
821, 81mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) )
833, 82mpd 13 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( N  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5258  (class class class)co 5922   1c1 7880    + caddc 7882   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540
This theorem is referenced by:  seq3f1olemqsumkj  10603  seq3shft  11003  mulgnndir  13281
  Copyright terms: Public domain W3C validator