ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft2 Unicode version

Theorem seq3shft2 10555
Description: Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
Hypotheses
Ref Expression
seq3shft2.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3shft2.2  |-  ( ph  ->  K  e.  ZZ )
seq3shft2.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  ( k  +  K ) ) )
seq3shft2.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3shft2.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( G `  x )  e.  S
)
seq3shft2.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3shft2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( N  +  K ) ) )
Distinct variable groups:    x,  .+ , y    k, F, x    y, F   
k, G, x    y, G    k, K, x    y, K    k, M, x    y, M    k, N, x    y, N    x, S, y    ph, k, x    ph, y
Allowed substitution hints:    .+ ( k)    S( k)

Proof of Theorem seq3shft2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seq3shft2.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10101 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2256 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5555 . . . . . . 7  |-  ( x  =  M  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  M
) )
6 fvoveq1 5942 . . . . . . 7  |-  ( x  =  M  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( M  +  K )
) )
75, 6eqeq12d 2208 . . . . . 6  |-  ( x  =  M  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) )
84, 7imbi12d 234 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( M  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) ) )
98imbi2d 230 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) ) ) )
10 eleq1 2256 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
11 fveq2 5555 . . . . . . 7  |-  ( x  =  n  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  n
) )
12 fvoveq1 5942 . . . . . . 7  |-  ( x  =  n  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )
1311, 12eqeq12d 2208 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) )
1410, 13imbi12d 234 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( n  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) ) )
1514imbi2d 230 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) ) ) )
16 eleq1 2256 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
17 fveq2 5555 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
18 fvoveq1 5942 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) )
1917, 18eqeq12d 2208 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) )
2016, 19imbi12d 234 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) ) )
2120imbi2d 230 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) ) ) )
22 eleq1 2256 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
23 fveq2 5555 . . . . . . 7  |-  ( x  =  N  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  N
) )
24 fvoveq1 5942 . . . . . . 7  |-  ( x  =  N  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( N  +  K )
) )
2523, 24eqeq12d 2208 . . . . . 6  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) )
2622, 25imbi12d 234 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) )
2726imbi2d 230 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) ) )
28 fveq2 5555 . . . . . . . 8  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
29 fvoveq1 5942 . . . . . . . 8  |-  ( k  =  M  ->  ( G `  ( k  +  K ) )  =  ( G `  ( M  +  K )
) )
3028, 29eqeq12d 2208 . . . . . . 7  |-  ( k  =  M  ->  (
( F `  k
)  =  ( G `
 ( k  +  K ) )  <->  ( F `  M )  =  ( G `  ( M  +  K ) ) ) )
31 seq3shft2.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  ( k  +  K ) ) )
3231ralrimiva 2567 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  =  ( G `
 ( k  +  K ) ) )
33 eluzfz1 10100 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
341, 33syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
3530, 32, 34rspcdva 2870 . . . . . 6  |-  ( ph  ->  ( F `  M
)  =  ( G `
 ( M  +  K ) ) )
36 eluzel2 9600 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
371, 36syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
38 seq3shft2.f . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
39 seq3shft2.pl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
4037, 38, 39seq3-1 10536 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
41 seq3shft2.2 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
4237, 41zaddcld 9446 . . . . . . 7  |-  ( ph  ->  ( M  +  K
)  e.  ZZ )
43 seq3shft2.g . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( G `  x )  e.  S
)
4442, 43, 39seq3-1 10536 . . . . . 6  |-  ( ph  ->  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( M  +  K ) )  =  ( G `  ( M  +  K )
) )
4535, 40, 443eqtr4d 2236 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( M  +  K ) ) )
4645a1i13 24 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  M
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( M  +  K )
) ) ) )
47 peano2fzr 10106 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
4847adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
4948expr 375 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
5049imim1d 75 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )  ->  (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) ) ) )
51 oveq1 5926 . . . . . 6  |-  ( (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) )  .+  ( F `  ( n  +  1 ) ) ) )
52 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
5338adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) ) )  /\  x  e.  (
ZZ>= `  M ) )  ->  ( F `  x )  e.  S
)
5439adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
5552, 53, 54seq3p1 10539 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5641adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  K  e.  ZZ )
57 eluzadd 9624 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
n  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
5852, 56, 57syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  K )  e.  (
ZZ>= `  ( M  +  K ) ) )
5943adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) ) )  /\  x  e.  (
ZZ>= `  ( M  +  K ) ) )  ->  ( G `  x )  e.  S
)
6058, 59, 54seq3p1 10539 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  K
)  +  1 ) )  =  ( (  seq ( M  +  K ) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( G `
 ( ( n  +  K )  +  1 ) ) ) )
61 eluzelz 9604 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
6252, 61syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ZZ )
6362zcnd 9443 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  CC )
64 1cnd 8037 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  1  e.  CC )
6556zcnd 9443 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  K  e.  CC )
6663, 64, 65add32d 8189 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
n  +  1 )  +  K )  =  ( ( n  +  K )  +  1 ) )
6766fveq2d 5559 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  K
)  +  1 ) ) )
68 fveq2 5555 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
69 fvoveq1 5942 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( G `  ( k  +  K ) )  =  ( G `  (
( n  +  1 )  +  K ) ) )
7068, 69eqeq12d 2208 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  =  ( G `
 ( k  +  K ) )  <->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  1 )  +  K ) ) ) )
7132adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  =  ( G `  ( k  +  K ) ) )
72 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
7370, 71, 72rspcdva 2870 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  1 )  +  K ) ) )
7466fveq2d 5559 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( G `  ( ( n  + 
1 )  +  K
) )  =  ( G `  ( ( n  +  K )  +  1 ) ) )
7573, 74eqtrd 2226 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  K )  +  1 ) ) )
7675oveq2d 5935 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( F `
 ( n  + 
1 ) ) )  =  ( (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( G `
 ( ( n  +  K )  +  1 ) ) ) )
7760, 67, 763eqtr4d 2236 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  =  ( (  seq ( M  +  K ) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( F `
 ( n  + 
1 ) ) ) )
7855, 77eqeq12d 2208 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  <->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) )  .+  ( F `  ( n  +  1 ) ) ) ) )
7951, 78imbitrrid 156 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) )
8050, 79animpimp2impd 559 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) ) )  -> 
( ph  ->  ( ( n  +  1 )  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) ) ) )
819, 15, 21, 27, 46, 80uzind4 9656 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) )
821, 81mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) )
833, 82mpd 13 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( N  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   ` cfv 5255  (class class class)co 5919   1c1 7875    + caddc 7877   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077    seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-seqfrec 10522
This theorem is referenced by:  seq3f1olemqsumkj  10585  seq3shft  10985  mulgnndir  13224
  Copyright terms: Public domain W3C validator