| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3shft2 | Unicode version | ||
| Description: Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
| Ref | Expression |
|---|---|
| seq3shft2.1 |
|
| seq3shft2.2 |
|
| seq3shft2.3 |
|
| seq3shft2.f |
|
| seq3shft2.g |
|
| seq3shft2.pl |
|
| Ref | Expression |
|---|---|
| seq3shft2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seq3shft2.1 |
. . 3
| |
| 2 | eluzfz2 10189 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | eleq1 2270 |
. . . . . 6
| |
| 5 | fveq2 5599 |
. . . . . . 7
| |
| 6 | fvoveq1 5990 |
. . . . . . 7
| |
| 7 | 5, 6 | eqeq12d 2222 |
. . . . . 6
|
| 8 | 4, 7 | imbi12d 234 |
. . . . 5
|
| 9 | 8 | imbi2d 230 |
. . . 4
|
| 10 | eleq1 2270 |
. . . . . 6
| |
| 11 | fveq2 5599 |
. . . . . . 7
| |
| 12 | fvoveq1 5990 |
. . . . . . 7
| |
| 13 | 11, 12 | eqeq12d 2222 |
. . . . . 6
|
| 14 | 10, 13 | imbi12d 234 |
. . . . 5
|
| 15 | 14 | imbi2d 230 |
. . . 4
|
| 16 | eleq1 2270 |
. . . . . 6
| |
| 17 | fveq2 5599 |
. . . . . . 7
| |
| 18 | fvoveq1 5990 |
. . . . . . 7
| |
| 19 | 17, 18 | eqeq12d 2222 |
. . . . . 6
|
| 20 | 16, 19 | imbi12d 234 |
. . . . 5
|
| 21 | 20 | imbi2d 230 |
. . . 4
|
| 22 | eleq1 2270 |
. . . . . 6
| |
| 23 | fveq2 5599 |
. . . . . . 7
| |
| 24 | fvoveq1 5990 |
. . . . . . 7
| |
| 25 | 23, 24 | eqeq12d 2222 |
. . . . . 6
|
| 26 | 22, 25 | imbi12d 234 |
. . . . 5
|
| 27 | 26 | imbi2d 230 |
. . . 4
|
| 28 | fveq2 5599 |
. . . . . . . 8
| |
| 29 | fvoveq1 5990 |
. . . . . . . 8
| |
| 30 | 28, 29 | eqeq12d 2222 |
. . . . . . 7
|
| 31 | seq3shft2.3 |
. . . . . . . 8
| |
| 32 | 31 | ralrimiva 2581 |
. . . . . . 7
|
| 33 | eluzfz1 10188 |
. . . . . . . 8
| |
| 34 | 1, 33 | syl 14 |
. . . . . . 7
|
| 35 | 30, 32, 34 | rspcdva 2889 |
. . . . . 6
|
| 36 | eluzel2 9688 |
. . . . . . . 8
| |
| 37 | 1, 36 | syl 14 |
. . . . . . 7
|
| 38 | seq3shft2.f |
. . . . . . 7
| |
| 39 | seq3shft2.pl |
. . . . . . 7
| |
| 40 | 37, 38, 39 | seq3-1 10644 |
. . . . . 6
|
| 41 | seq3shft2.2 |
. . . . . . . 8
| |
| 42 | 37, 41 | zaddcld 9534 |
. . . . . . 7
|
| 43 | seq3shft2.g |
. . . . . . 7
| |
| 44 | 42, 43, 39 | seq3-1 10644 |
. . . . . 6
|
| 45 | 35, 40, 44 | 3eqtr4d 2250 |
. . . . 5
|
| 46 | 45 | a1i13 24 |
. . . 4
|
| 47 | peano2fzr 10194 |
. . . . . . . 8
| |
| 48 | 47 | adantl 277 |
. . . . . . 7
|
| 49 | 48 | expr 375 |
. . . . . 6
|
| 50 | 49 | imim1d 75 |
. . . . 5
|
| 51 | oveq1 5974 |
. . . . . 6
| |
| 52 | simprl 529 |
. . . . . . . 8
| |
| 53 | 38 | adantlr 477 |
. . . . . . . 8
|
| 54 | 39 | adantlr 477 |
. . . . . . . 8
|
| 55 | 52, 53, 54 | seq3p1 10647 |
. . . . . . 7
|
| 56 | 41 | adantr 276 |
. . . . . . . . . 10
|
| 57 | eluzadd 9712 |
. . . . . . . . . 10
| |
| 58 | 52, 56, 57 | syl2anc 411 |
. . . . . . . . 9
|
| 59 | 43 | adantlr 477 |
. . . . . . . . 9
|
| 60 | 58, 59, 54 | seq3p1 10647 |
. . . . . . . 8
|
| 61 | eluzelz 9692 |
. . . . . . . . . . . 12
| |
| 62 | 52, 61 | syl 14 |
. . . . . . . . . . 11
|
| 63 | 62 | zcnd 9531 |
. . . . . . . . . 10
|
| 64 | 1cnd 8123 |
. . . . . . . . . 10
| |
| 65 | 56 | zcnd 9531 |
. . . . . . . . . 10
|
| 66 | 63, 64, 65 | add32d 8275 |
. . . . . . . . 9
|
| 67 | 66 | fveq2d 5603 |
. . . . . . . 8
|
| 68 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 69 | fvoveq1 5990 |
. . . . . . . . . . . 12
| |
| 70 | 68, 69 | eqeq12d 2222 |
. . . . . . . . . . 11
|
| 71 | 32 | adantr 276 |
. . . . . . . . . . 11
|
| 72 | simprr 531 |
. . . . . . . . . . 11
| |
| 73 | 70, 71, 72 | rspcdva 2889 |
. . . . . . . . . 10
|
| 74 | 66 | fveq2d 5603 |
. . . . . . . . . 10
|
| 75 | 73, 74 | eqtrd 2240 |
. . . . . . . . 9
|
| 76 | 75 | oveq2d 5983 |
. . . . . . . 8
|
| 77 | 60, 67, 76 | 3eqtr4d 2250 |
. . . . . . 7
|
| 78 | 55, 77 | eqeq12d 2222 |
. . . . . 6
|
| 79 | 51, 78 | imbitrrid 156 |
. . . . 5
|
| 80 | 50, 79 | animpimp2impd 559 |
. . . 4
|
| 81 | 9, 15, 21, 27, 46, 80 | uzind4 9744 |
. . 3
|
| 82 | 1, 81 | mpcom 36 |
. 2
|
| 83 | 3, 82 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-seqfrec 10630 |
| This theorem is referenced by: seq3f1olemqsumkj 10693 seq3shft 11264 mulgnndir 13602 |
| Copyright terms: Public domain | W3C validator |