ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft2 Unicode version

Theorem seq3shft2 10663
Description: Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
Hypotheses
Ref Expression
seq3shft2.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3shft2.2  |-  ( ph  ->  K  e.  ZZ )
seq3shft2.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  ( k  +  K ) ) )
seq3shft2.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3shft2.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( G `  x )  e.  S
)
seq3shft2.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3shft2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( N  +  K ) ) )
Distinct variable groups:    x,  .+ , y    k, F, x    y, F   
k, G, x    y, G    k, K, x    y, K    k, M, x    y, M    k, N, x    y, N    x, S, y    ph, k, x    ph, y
Allowed substitution hints:    .+ ( k)    S( k)

Proof of Theorem seq3shft2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seq3shft2.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10189 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2270 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5599 . . . . . . 7  |-  ( x  =  M  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  M
) )
6 fvoveq1 5990 . . . . . . 7  |-  ( x  =  M  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( M  +  K )
) )
75, 6eqeq12d 2222 . . . . . 6  |-  ( x  =  M  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) )
84, 7imbi12d 234 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( M  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) ) )
98imbi2d 230 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) ) ) )
10 eleq1 2270 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
11 fveq2 5599 . . . . . . 7  |-  ( x  =  n  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  n
) )
12 fvoveq1 5990 . . . . . . 7  |-  ( x  =  n  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )
1311, 12eqeq12d 2222 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) )
1410, 13imbi12d 234 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( n  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) ) )
1514imbi2d 230 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) ) ) )
16 eleq1 2270 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
17 fveq2 5599 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
18 fvoveq1 5990 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) )
1917, 18eqeq12d 2222 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) )
2016, 19imbi12d 234 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) ) )
2120imbi2d 230 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) ) ) )
22 eleq1 2270 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
23 fveq2 5599 . . . . . . 7  |-  ( x  =  N  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  N
) )
24 fvoveq1 5990 . . . . . . 7  |-  ( x  =  N  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( N  +  K )
) )
2523, 24eqeq12d 2222 . . . . . 6  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) )
2622, 25imbi12d 234 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) )
2726imbi2d 230 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) ) )
28 fveq2 5599 . . . . . . . 8  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
29 fvoveq1 5990 . . . . . . . 8  |-  ( k  =  M  ->  ( G `  ( k  +  K ) )  =  ( G `  ( M  +  K )
) )
3028, 29eqeq12d 2222 . . . . . . 7  |-  ( k  =  M  ->  (
( F `  k
)  =  ( G `
 ( k  +  K ) )  <->  ( F `  M )  =  ( G `  ( M  +  K ) ) ) )
31 seq3shft2.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  ( k  +  K ) ) )
3231ralrimiva 2581 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  =  ( G `
 ( k  +  K ) ) )
33 eluzfz1 10188 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
341, 33syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
3530, 32, 34rspcdva 2889 . . . . . 6  |-  ( ph  ->  ( F `  M
)  =  ( G `
 ( M  +  K ) ) )
36 eluzel2 9688 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
371, 36syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
38 seq3shft2.f . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
39 seq3shft2.pl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
4037, 38, 39seq3-1 10644 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
41 seq3shft2.2 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
4237, 41zaddcld 9534 . . . . . . 7  |-  ( ph  ->  ( M  +  K
)  e.  ZZ )
43 seq3shft2.g . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( G `  x )  e.  S
)
4442, 43, 39seq3-1 10644 . . . . . 6  |-  ( ph  ->  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( M  +  K ) )  =  ( G `  ( M  +  K )
) )
4535, 40, 443eqtr4d 2250 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( M  +  K ) ) )
4645a1i13 24 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  M
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( M  +  K )
) ) ) )
47 peano2fzr 10194 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
4847adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
4948expr 375 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
5049imim1d 75 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )  ->  (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) ) ) )
51 oveq1 5974 . . . . . 6  |-  ( (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) )  .+  ( F `  ( n  +  1 ) ) ) )
52 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
5338adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) ) )  /\  x  e.  (
ZZ>= `  M ) )  ->  ( F `  x )  e.  S
)
5439adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
5552, 53, 54seq3p1 10647 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5641adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  K  e.  ZZ )
57 eluzadd 9712 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
n  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
5852, 56, 57syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  K )  e.  (
ZZ>= `  ( M  +  K ) ) )
5943adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) ) )  /\  x  e.  (
ZZ>= `  ( M  +  K ) ) )  ->  ( G `  x )  e.  S
)
6058, 59, 54seq3p1 10647 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  K
)  +  1 ) )  =  ( (  seq ( M  +  K ) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( G `
 ( ( n  +  K )  +  1 ) ) ) )
61 eluzelz 9692 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
6252, 61syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ZZ )
6362zcnd 9531 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  CC )
64 1cnd 8123 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  1  e.  CC )
6556zcnd 9531 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  K  e.  CC )
6663, 64, 65add32d 8275 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
n  +  1 )  +  K )  =  ( ( n  +  K )  +  1 ) )
6766fveq2d 5603 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  K
)  +  1 ) ) )
68 fveq2 5599 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
69 fvoveq1 5990 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( G `  ( k  +  K ) )  =  ( G `  (
( n  +  1 )  +  K ) ) )
7068, 69eqeq12d 2222 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  =  ( G `
 ( k  +  K ) )  <->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  1 )  +  K ) ) ) )
7132adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  =  ( G `  ( k  +  K ) ) )
72 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
7370, 71, 72rspcdva 2889 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  1 )  +  K ) ) )
7466fveq2d 5603 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( G `  ( ( n  + 
1 )  +  K
) )  =  ( G `  ( ( n  +  K )  +  1 ) ) )
7573, 74eqtrd 2240 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  K )  +  1 ) ) )
7675oveq2d 5983 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( F `
 ( n  + 
1 ) ) )  =  ( (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( G `
 ( ( n  +  K )  +  1 ) ) ) )
7760, 67, 763eqtr4d 2250 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  =  ( (  seq ( M  +  K ) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( F `
 ( n  + 
1 ) ) ) )
7855, 77eqeq12d 2222 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  <->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) )  .+  ( F `  ( n  +  1 ) ) ) ) )
7951, 78imbitrrid 156 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) )
8050, 79animpimp2impd 559 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) ) )  -> 
( ph  ->  ( ( n  +  1 )  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) ) ) )
819, 15, 21, 27, 46, 80uzind4 9744 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) )
821, 81mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) )
833, 82mpd 13 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( N  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   ` cfv 5290  (class class class)co 5967   1c1 7961    + caddc 7963   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165    seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-seqfrec 10630
This theorem is referenced by:  seq3f1olemqsumkj  10693  seq3shft  11264  mulgnndir  13602
  Copyright terms: Public domain W3C validator