| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3shft2 | Unicode version | ||
| Description: Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
| Ref | Expression |
|---|---|
| seq3shft2.1 |
|
| seq3shft2.2 |
|
| seq3shft2.3 |
|
| seq3shft2.f |
|
| seq3shft2.g |
|
| seq3shft2.pl |
|
| Ref | Expression |
|---|---|
| seq3shft2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seq3shft2.1 |
. . 3
| |
| 2 | eluzfz2 10228 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | eleq1 2292 |
. . . . . 6
| |
| 5 | fveq2 5627 |
. . . . . . 7
| |
| 6 | fvoveq1 6024 |
. . . . . . 7
| |
| 7 | 5, 6 | eqeq12d 2244 |
. . . . . 6
|
| 8 | 4, 7 | imbi12d 234 |
. . . . 5
|
| 9 | 8 | imbi2d 230 |
. . . 4
|
| 10 | eleq1 2292 |
. . . . . 6
| |
| 11 | fveq2 5627 |
. . . . . . 7
| |
| 12 | fvoveq1 6024 |
. . . . . . 7
| |
| 13 | 11, 12 | eqeq12d 2244 |
. . . . . 6
|
| 14 | 10, 13 | imbi12d 234 |
. . . . 5
|
| 15 | 14 | imbi2d 230 |
. . . 4
|
| 16 | eleq1 2292 |
. . . . . 6
| |
| 17 | fveq2 5627 |
. . . . . . 7
| |
| 18 | fvoveq1 6024 |
. . . . . . 7
| |
| 19 | 17, 18 | eqeq12d 2244 |
. . . . . 6
|
| 20 | 16, 19 | imbi12d 234 |
. . . . 5
|
| 21 | 20 | imbi2d 230 |
. . . 4
|
| 22 | eleq1 2292 |
. . . . . 6
| |
| 23 | fveq2 5627 |
. . . . . . 7
| |
| 24 | fvoveq1 6024 |
. . . . . . 7
| |
| 25 | 23, 24 | eqeq12d 2244 |
. . . . . 6
|
| 26 | 22, 25 | imbi12d 234 |
. . . . 5
|
| 27 | 26 | imbi2d 230 |
. . . 4
|
| 28 | fveq2 5627 |
. . . . . . . 8
| |
| 29 | fvoveq1 6024 |
. . . . . . . 8
| |
| 30 | 28, 29 | eqeq12d 2244 |
. . . . . . 7
|
| 31 | seq3shft2.3 |
. . . . . . . 8
| |
| 32 | 31 | ralrimiva 2603 |
. . . . . . 7
|
| 33 | eluzfz1 10227 |
. . . . . . . 8
| |
| 34 | 1, 33 | syl 14 |
. . . . . . 7
|
| 35 | 30, 32, 34 | rspcdva 2912 |
. . . . . 6
|
| 36 | eluzel2 9727 |
. . . . . . . 8
| |
| 37 | 1, 36 | syl 14 |
. . . . . . 7
|
| 38 | seq3shft2.f |
. . . . . . 7
| |
| 39 | seq3shft2.pl |
. . . . . . 7
| |
| 40 | 37, 38, 39 | seq3-1 10684 |
. . . . . 6
|
| 41 | seq3shft2.2 |
. . . . . . . 8
| |
| 42 | 37, 41 | zaddcld 9573 |
. . . . . . 7
|
| 43 | seq3shft2.g |
. . . . . . 7
| |
| 44 | 42, 43, 39 | seq3-1 10684 |
. . . . . 6
|
| 45 | 35, 40, 44 | 3eqtr4d 2272 |
. . . . 5
|
| 46 | 45 | a1i13 24 |
. . . 4
|
| 47 | peano2fzr 10233 |
. . . . . . . 8
| |
| 48 | 47 | adantl 277 |
. . . . . . 7
|
| 49 | 48 | expr 375 |
. . . . . 6
|
| 50 | 49 | imim1d 75 |
. . . . 5
|
| 51 | oveq1 6008 |
. . . . . 6
| |
| 52 | simprl 529 |
. . . . . . . 8
| |
| 53 | 38 | adantlr 477 |
. . . . . . . 8
|
| 54 | 39 | adantlr 477 |
. . . . . . . 8
|
| 55 | 52, 53, 54 | seq3p1 10687 |
. . . . . . 7
|
| 56 | 41 | adantr 276 |
. . . . . . . . . 10
|
| 57 | eluzadd 9751 |
. . . . . . . . . 10
| |
| 58 | 52, 56, 57 | syl2anc 411 |
. . . . . . . . 9
|
| 59 | 43 | adantlr 477 |
. . . . . . . . 9
|
| 60 | 58, 59, 54 | seq3p1 10687 |
. . . . . . . 8
|
| 61 | eluzelz 9731 |
. . . . . . . . . . . 12
| |
| 62 | 52, 61 | syl 14 |
. . . . . . . . . . 11
|
| 63 | 62 | zcnd 9570 |
. . . . . . . . . 10
|
| 64 | 1cnd 8162 |
. . . . . . . . . 10
| |
| 65 | 56 | zcnd 9570 |
. . . . . . . . . 10
|
| 66 | 63, 64, 65 | add32d 8314 |
. . . . . . . . 9
|
| 67 | 66 | fveq2d 5631 |
. . . . . . . 8
|
| 68 | fveq2 5627 |
. . . . . . . . . . . 12
| |
| 69 | fvoveq1 6024 |
. . . . . . . . . . . 12
| |
| 70 | 68, 69 | eqeq12d 2244 |
. . . . . . . . . . 11
|
| 71 | 32 | adantr 276 |
. . . . . . . . . . 11
|
| 72 | simprr 531 |
. . . . . . . . . . 11
| |
| 73 | 70, 71, 72 | rspcdva 2912 |
. . . . . . . . . 10
|
| 74 | 66 | fveq2d 5631 |
. . . . . . . . . 10
|
| 75 | 73, 74 | eqtrd 2262 |
. . . . . . . . 9
|
| 76 | 75 | oveq2d 6017 |
. . . . . . . 8
|
| 77 | 60, 67, 76 | 3eqtr4d 2272 |
. . . . . . 7
|
| 78 | 55, 77 | eqeq12d 2244 |
. . . . . 6
|
| 79 | 51, 78 | imbitrrid 156 |
. . . . 5
|
| 80 | 50, 79 | animpimp2impd 559 |
. . . 4
|
| 81 | 9, 15, 21, 27, 46, 80 | uzind4 9783 |
. . 3
|
| 82 | 1, 81 | mpcom 36 |
. 2
|
| 83 | 3, 82 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-seqfrec 10670 |
| This theorem is referenced by: seq3f1olemqsumkj 10733 seq3shft 11349 mulgnndir 13688 |
| Copyright terms: Public domain | W3C validator |