Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3shft2 | Unicode version |
Description: Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
Ref | Expression |
---|---|
seq3shft2.1 | |
seq3shft2.2 | |
seq3shft2.3 | |
seq3shft2.f | |
seq3shft2.g | |
seq3shft2.pl |
Ref | Expression |
---|---|
seq3shft2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seq3shft2.1 | . . 3 | |
2 | eluzfz2 9967 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | eleq1 2229 | . . . . . 6 | |
5 | fveq2 5486 | . . . . . . 7 | |
6 | fvoveq1 5865 | . . . . . . 7 | |
7 | 5, 6 | eqeq12d 2180 | . . . . . 6 |
8 | 4, 7 | imbi12d 233 | . . . . 5 |
9 | 8 | imbi2d 229 | . . . 4 |
10 | eleq1 2229 | . . . . . 6 | |
11 | fveq2 5486 | . . . . . . 7 | |
12 | fvoveq1 5865 | . . . . . . 7 | |
13 | 11, 12 | eqeq12d 2180 | . . . . . 6 |
14 | 10, 13 | imbi12d 233 | . . . . 5 |
15 | 14 | imbi2d 229 | . . . 4 |
16 | eleq1 2229 | . . . . . 6 | |
17 | fveq2 5486 | . . . . . . 7 | |
18 | fvoveq1 5865 | . . . . . . 7 | |
19 | 17, 18 | eqeq12d 2180 | . . . . . 6 |
20 | 16, 19 | imbi12d 233 | . . . . 5 |
21 | 20 | imbi2d 229 | . . . 4 |
22 | eleq1 2229 | . . . . . 6 | |
23 | fveq2 5486 | . . . . . . 7 | |
24 | fvoveq1 5865 | . . . . . . 7 | |
25 | 23, 24 | eqeq12d 2180 | . . . . . 6 |
26 | 22, 25 | imbi12d 233 | . . . . 5 |
27 | 26 | imbi2d 229 | . . . 4 |
28 | fveq2 5486 | . . . . . . . 8 | |
29 | fvoveq1 5865 | . . . . . . . 8 | |
30 | 28, 29 | eqeq12d 2180 | . . . . . . 7 |
31 | seq3shft2.3 | . . . . . . . 8 | |
32 | 31 | ralrimiva 2539 | . . . . . . 7 |
33 | eluzfz1 9966 | . . . . . . . 8 | |
34 | 1, 33 | syl 14 | . . . . . . 7 |
35 | 30, 32, 34 | rspcdva 2835 | . . . . . 6 |
36 | eluzel2 9471 | . . . . . . . 8 | |
37 | 1, 36 | syl 14 | . . . . . . 7 |
38 | seq3shft2.f | . . . . . . 7 | |
39 | seq3shft2.pl | . . . . . . 7 | |
40 | 37, 38, 39 | seq3-1 10395 | . . . . . 6 |
41 | seq3shft2.2 | . . . . . . . 8 | |
42 | 37, 41 | zaddcld 9317 | . . . . . . 7 |
43 | seq3shft2.g | . . . . . . 7 | |
44 | 42, 43, 39 | seq3-1 10395 | . . . . . 6 |
45 | 35, 40, 44 | 3eqtr4d 2208 | . . . . 5 |
46 | 45 | a1i13 24 | . . . 4 |
47 | peano2fzr 9972 | . . . . . . . 8 | |
48 | 47 | adantl 275 | . . . . . . 7 |
49 | 48 | expr 373 | . . . . . 6 |
50 | 49 | imim1d 75 | . . . . 5 |
51 | oveq1 5849 | . . . . . 6 | |
52 | simprl 521 | . . . . . . . 8 | |
53 | 38 | adantlr 469 | . . . . . . . 8 |
54 | 39 | adantlr 469 | . . . . . . . 8 |
55 | 52, 53, 54 | seq3p1 10397 | . . . . . . 7 |
56 | 41 | adantr 274 | . . . . . . . . . 10 |
57 | eluzadd 9494 | . . . . . . . . . 10 | |
58 | 52, 56, 57 | syl2anc 409 | . . . . . . . . 9 |
59 | 43 | adantlr 469 | . . . . . . . . 9 |
60 | 58, 59, 54 | seq3p1 10397 | . . . . . . . 8 |
61 | eluzelz 9475 | . . . . . . . . . . . 12 | |
62 | 52, 61 | syl 14 | . . . . . . . . . . 11 |
63 | 62 | zcnd 9314 | . . . . . . . . . 10 |
64 | 1cnd 7915 | . . . . . . . . . 10 | |
65 | 56 | zcnd 9314 | . . . . . . . . . 10 |
66 | 63, 64, 65 | add32d 8066 | . . . . . . . . 9 |
67 | 66 | fveq2d 5490 | . . . . . . . 8 |
68 | fveq2 5486 | . . . . . . . . . . . 12 | |
69 | fvoveq1 5865 | . . . . . . . . . . . 12 | |
70 | 68, 69 | eqeq12d 2180 | . . . . . . . . . . 11 |
71 | 32 | adantr 274 | . . . . . . . . . . 11 |
72 | simprr 522 | . . . . . . . . . . 11 | |
73 | 70, 71, 72 | rspcdva 2835 | . . . . . . . . . 10 |
74 | 66 | fveq2d 5490 | . . . . . . . . . 10 |
75 | 73, 74 | eqtrd 2198 | . . . . . . . . 9 |
76 | 75 | oveq2d 5858 | . . . . . . . 8 |
77 | 60, 67, 76 | 3eqtr4d 2208 | . . . . . . 7 |
78 | 55, 77 | eqeq12d 2180 | . . . . . 6 |
79 | 51, 78 | syl5ibr 155 | . . . . 5 |
80 | 50, 79 | animpimp2impd 549 | . . . 4 |
81 | 9, 15, 21, 27, 46, 80 | uzind4 9526 | . . 3 |
82 | 1, 81 | mpcom 36 | . 2 |
83 | 3, 82 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 cfv 5188 (class class class)co 5842 c1 7754 caddc 7756 cz 9191 cuz 9466 cfz 9944 cseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-seqfrec 10381 |
This theorem is referenced by: seq3f1olemqsumkj 10433 seq3shft 10780 |
Copyright terms: Public domain | W3C validator |