| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > seq3id2 | Unicode version | ||
| Description: The last few partial sums
of a sequence that ends with all zeroes (or
       any element which is a right-identity for  | 
| Ref | Expression | 
|---|---|
| seqid2.1 | 
 | 
| seqid2.2 | 
 | 
| seqid2.3 | 
 | 
| seqid2.4 | 
 | 
| seqid2.5 | 
 | 
| seq3id2.f | 
 | 
| seq3id2.cl | 
 | 
| Ref | Expression | 
|---|---|
| seq3id2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | seqid2.3 | 
. . 3
 | |
| 2 | eluzfz2 10107 | 
. . 3
 | |
| 3 | 1, 2 | syl 14 | 
. 2
 | 
| 4 | eleq1 2259 | 
. . . . . 6
 | |
| 5 | fveq2 5558 | 
. . . . . . 7
 | |
| 6 | 5 | eqeq2d 2208 | 
. . . . . 6
 | 
| 7 | 4, 6 | imbi12d 234 | 
. . . . 5
 | 
| 8 | 7 | imbi2d 230 | 
. . . 4
 | 
| 9 | eleq1 2259 | 
. . . . . 6
 | |
| 10 | fveq2 5558 | 
. . . . . . 7
 | |
| 11 | 10 | eqeq2d 2208 | 
. . . . . 6
 | 
| 12 | 9, 11 | imbi12d 234 | 
. . . . 5
 | 
| 13 | 12 | imbi2d 230 | 
. . . 4
 | 
| 14 | eleq1 2259 | 
. . . . . 6
 | |
| 15 | fveq2 5558 | 
. . . . . . 7
 | |
| 16 | 15 | eqeq2d 2208 | 
. . . . . 6
 | 
| 17 | 14, 16 | imbi12d 234 | 
. . . . 5
 | 
| 18 | 17 | imbi2d 230 | 
. . . 4
 | 
| 19 | eleq1 2259 | 
. . . . . 6
 | |
| 20 | fveq2 5558 | 
. . . . . . 7
 | |
| 21 | 20 | eqeq2d 2208 | 
. . . . . 6
 | 
| 22 | 19, 21 | imbi12d 234 | 
. . . . 5
 | 
| 23 | 22 | imbi2d 230 | 
. . . 4
 | 
| 24 | eqidd 2197 | 
. . . . 5
 | |
| 25 | 24 | 2a1i 27 | 
. . . 4
 | 
| 26 | peano2fzr 10112 | 
. . . . . . . 8
 | |
| 27 | 26 | adantl 277 | 
. . . . . . 7
 | 
| 28 | 27 | expr 375 | 
. . . . . 6
 | 
| 29 | 28 | imim1d 75 | 
. . . . 5
 | 
| 30 | oveq1 5929 | 
. . . . . 6
 | |
| 31 | fveqeq2 5567 | 
. . . . . . . . . 10
 | |
| 32 | seqid2.5 | 
. . . . . . . . . . . 12
 | |
| 33 | 32 | ralrimiva 2570 | 
. . . . . . . . . . 11
 | 
| 34 | 33 | adantr 276 | 
. . . . . . . . . 10
 | 
| 35 | eluzp1p1 9627 | 
. . . . . . . . . . . 12
 | |
| 36 | 35 | ad2antrl 490 | 
. . . . . . . . . . 11
 | 
| 37 | elfzuz3 10097 | 
. . . . . . . . . . . 12
 | |
| 38 | 37 | ad2antll 491 | 
. . . . . . . . . . 11
 | 
| 39 | elfzuzb 10094 | 
. . . . . . . . . . 11
 | |
| 40 | 36, 38, 39 | sylanbrc 417 | 
. . . . . . . . . 10
 | 
| 41 | 31, 34, 40 | rspcdva 2873 | 
. . . . . . . . 9
 | 
| 42 | 41 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 43 | oveq1 5929 | 
. . . . . . . . . . 11
 | |
| 44 | id 19 | 
. . . . . . . . . . 11
 | |
| 45 | 43, 44 | eqeq12d 2211 | 
. . . . . . . . . 10
 | 
| 46 | seqid2.1 | 
. . . . . . . . . . 11
 | |
| 47 | 46 | ralrimiva 2570 | 
. . . . . . . . . 10
 | 
| 48 | seqid2.4 | 
. . . . . . . . . 10
 | |
| 49 | 45, 47, 48 | rspcdva 2873 | 
. . . . . . . . 9
 | 
| 50 | 49 | adantr 276 | 
. . . . . . . 8
 | 
| 51 | 42, 50 | eqtr2d 2230 | 
. . . . . . 7
 | 
| 52 | simprl 529 | 
. . . . . . . . 9
 | |
| 53 | seqid2.2 | 
. . . . . . . . . 10
 | |
| 54 | 53 | adantr 276 | 
. . . . . . . . 9
 | 
| 55 | uztrn 9618 | 
. . . . . . . . 9
 | |
| 56 | 52, 54, 55 | syl2anc 411 | 
. . . . . . . 8
 | 
| 57 | seq3id2.f | 
. . . . . . . . 9
 | |
| 58 | 57 | adantlr 477 | 
. . . . . . . 8
 | 
| 59 | seq3id2.cl | 
. . . . . . . . 9
 | |
| 60 | 59 | adantlr 477 | 
. . . . . . . 8
 | 
| 61 | 56, 58, 60 | seq3p1 10557 | 
. . . . . . 7
 | 
| 62 | 51, 61 | eqeq12d 2211 | 
. . . . . 6
 | 
| 63 | 30, 62 | imbitrrid 156 | 
. . . . 5
 | 
| 64 | 29, 63 | animpimp2impd 559 | 
. . . 4
 | 
| 65 | 8, 13, 18, 23, 25, 64 | uzind4 9662 | 
. . 3
 | 
| 66 | 1, 65 | mpcom 36 | 
. 2
 | 
| 67 | 3, 66 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 | 
| This theorem is referenced by: seq3coll 10934 fsum3cvg 11543 fproddccvg 11737 lgsdilem2 15277 | 
| Copyright terms: Public domain | W3C validator |