| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3id2 | Unicode version | ||
| Description: The last few partial sums
of a sequence that ends with all zeroes (or
any element which is a right-identity for |
| Ref | Expression |
|---|---|
| seqid2.1 |
|
| seqid2.2 |
|
| seqid2.3 |
|
| seqid2.4 |
|
| seqid2.5 |
|
| seq3id2.f |
|
| seq3id2.cl |
|
| Ref | Expression |
|---|---|
| seq3id2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqid2.3 |
. . 3
| |
| 2 | eluzfz2 10224 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | eleq1 2292 |
. . . . . 6
| |
| 5 | fveq2 5626 |
. . . . . . 7
| |
| 6 | 5 | eqeq2d 2241 |
. . . . . 6
|
| 7 | 4, 6 | imbi12d 234 |
. . . . 5
|
| 8 | 7 | imbi2d 230 |
. . . 4
|
| 9 | eleq1 2292 |
. . . . . 6
| |
| 10 | fveq2 5626 |
. . . . . . 7
| |
| 11 | 10 | eqeq2d 2241 |
. . . . . 6
|
| 12 | 9, 11 | imbi12d 234 |
. . . . 5
|
| 13 | 12 | imbi2d 230 |
. . . 4
|
| 14 | eleq1 2292 |
. . . . . 6
| |
| 15 | fveq2 5626 |
. . . . . . 7
| |
| 16 | 15 | eqeq2d 2241 |
. . . . . 6
|
| 17 | 14, 16 | imbi12d 234 |
. . . . 5
|
| 18 | 17 | imbi2d 230 |
. . . 4
|
| 19 | eleq1 2292 |
. . . . . 6
| |
| 20 | fveq2 5626 |
. . . . . . 7
| |
| 21 | 20 | eqeq2d 2241 |
. . . . . 6
|
| 22 | 19, 21 | imbi12d 234 |
. . . . 5
|
| 23 | 22 | imbi2d 230 |
. . . 4
|
| 24 | eqidd 2230 |
. . . . 5
| |
| 25 | 24 | 2a1i 27 |
. . . 4
|
| 26 | peano2fzr 10229 |
. . . . . . . 8
| |
| 27 | 26 | adantl 277 |
. . . . . . 7
|
| 28 | 27 | expr 375 |
. . . . . 6
|
| 29 | 28 | imim1d 75 |
. . . . 5
|
| 30 | oveq1 6007 |
. . . . . 6
| |
| 31 | fveqeq2 5635 |
. . . . . . . . . 10
| |
| 32 | seqid2.5 |
. . . . . . . . . . . 12
| |
| 33 | 32 | ralrimiva 2603 |
. . . . . . . . . . 11
|
| 34 | 33 | adantr 276 |
. . . . . . . . . 10
|
| 35 | eluzp1p1 9744 |
. . . . . . . . . . . 12
| |
| 36 | 35 | ad2antrl 490 |
. . . . . . . . . . 11
|
| 37 | elfzuz3 10214 |
. . . . . . . . . . . 12
| |
| 38 | 37 | ad2antll 491 |
. . . . . . . . . . 11
|
| 39 | elfzuzb 10211 |
. . . . . . . . . . 11
| |
| 40 | 36, 38, 39 | sylanbrc 417 |
. . . . . . . . . 10
|
| 41 | 31, 34, 40 | rspcdva 2912 |
. . . . . . . . 9
|
| 42 | 41 | oveq2d 6016 |
. . . . . . . 8
|
| 43 | oveq1 6007 |
. . . . . . . . . . 11
| |
| 44 | id 19 |
. . . . . . . . . . 11
| |
| 45 | 43, 44 | eqeq12d 2244 |
. . . . . . . . . 10
|
| 46 | seqid2.1 |
. . . . . . . . . . 11
| |
| 47 | 46 | ralrimiva 2603 |
. . . . . . . . . 10
|
| 48 | seqid2.4 |
. . . . . . . . . 10
| |
| 49 | 45, 47, 48 | rspcdva 2912 |
. . . . . . . . 9
|
| 50 | 49 | adantr 276 |
. . . . . . . 8
|
| 51 | 42, 50 | eqtr2d 2263 |
. . . . . . 7
|
| 52 | simprl 529 |
. . . . . . . . 9
| |
| 53 | seqid2.2 |
. . . . . . . . . 10
| |
| 54 | 53 | adantr 276 |
. . . . . . . . 9
|
| 55 | uztrn 9735 |
. . . . . . . . 9
| |
| 56 | 52, 54, 55 | syl2anc 411 |
. . . . . . . 8
|
| 57 | seq3id2.f |
. . . . . . . . 9
| |
| 58 | 57 | adantlr 477 |
. . . . . . . 8
|
| 59 | seq3id2.cl |
. . . . . . . . 9
| |
| 60 | 59 | adantlr 477 |
. . . . . . . 8
|
| 61 | 56, 58, 60 | seq3p1 10682 |
. . . . . . 7
|
| 62 | 51, 61 | eqeq12d 2244 |
. . . . . 6
|
| 63 | 30, 62 | imbitrrid 156 |
. . . . 5
|
| 64 | 29, 63 | animpimp2impd 559 |
. . . 4
|
| 65 | 8, 13, 18, 23, 25, 64 | uzind4 9779 |
. . 3
|
| 66 | 1, 65 | mpcom 36 |
. 2
|
| 67 | 3, 66 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-seqfrec 10665 |
| This theorem is referenced by: seq3coll 11059 fsum3cvg 11884 fproddccvg 12078 lgsdilem2 15709 |
| Copyright terms: Public domain | W3C validator |