ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3id2 Unicode version

Theorem seq3id2 10511
Description: The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for  .+) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.)
Hypotheses
Ref Expression
seqid2.1  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  x )
seqid2.2  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
seqid2.3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
seqid2.4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  e.  S )
seqid2.5  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  x )  =  Z )
seq3id2.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3id2.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3id2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  (  seq M ( 
.+  ,  F ) `
 N ) )
Distinct variable groups:    x, y, F   
x, K, y    x, M, y    x, N, y    ph, x, y    x, S, y    x,  .+ , y    x, Z
Allowed substitution hint:    Z( y)

Proof of Theorem seq3id2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seqid2.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 eluzfz2 10034 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ( K ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( K ... N ) )
4 eleq1 2240 . . . . . 6  |-  ( x  =  K  ->  (
x  e.  ( K ... N )  <->  K  e.  ( K ... N ) ) )
5 fveq2 5517 . . . . . . 7  |-  ( x  =  K  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  K
) )
65eqeq2d 2189 . . . . . 6  |-  ( x  =  K  ->  (
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 K ) ) )
74, 6imbi12d 234 . . . . 5  |-  ( x  =  K  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 x ) )  <-> 
( K  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 K ) ) ) )
87imbi2d 230 . . . 4  |-  ( x  =  K  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
) ) )  <->  ( ph  ->  ( K  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 K ) ) ) ) )
9 eleq1 2240 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( K ... N )  <->  n  e.  ( K ... N ) ) )
10 fveq2 5517 . . . . . . 7  |-  ( x  =  n  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  n
) )
1110eqeq2d 2189 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 n ) ) )
129, 11imbi12d 234 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 x ) )  <-> 
( n  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 n ) ) ) )
1312imbi2d 230 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
) ) )  <->  ( ph  ->  ( n  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 n ) ) ) ) )
14 eleq1 2240 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( K ... N )  <->  ( n  +  1 )  e.  ( K ... N
) ) )
15 fveq2 5517 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
1615eqeq2d 2189 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) ) )
1714, 16imbi12d 234 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 x ) )  <-> 
( ( n  + 
1 )  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) ) ) )
1817imbi2d 230 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) ) ) ) )
19 eleq1 2240 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( K ... N )  <->  N  e.  ( K ... N ) ) )
20 fveq2 5517 . . . . . . 7  |-  ( x  =  N  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  N
) )
2120eqeq2d 2189 . . . . . 6  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
2219, 21imbi12d 234 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 x ) )  <-> 
( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) ) )
2322imbi2d 230 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
) ) )  <->  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) ) ) )
24 eqidd 2178 . . . . 5  |-  ( K  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  K
) )
25242a1i 27 . . . 4  |-  ( K  e.  ZZ  ->  ( ph  ->  ( K  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  K
) ) ) )
26 peano2fzr 10039 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) )  ->  n  e.  ( K ... N ) )
2726adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( K ... N ) )
2827expr 375 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  +  1 )  e.  ( K ... N )  ->  n  e.  ( K ... N
) ) )
2928imim1d 75 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
) )  ->  (
( n  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
30 oveq1 5884 . . . . . 6  |-  ( (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
)  ->  ( (  seq M (  .+  ,  F ) `  K
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) )
31 fveqeq2 5526 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  x
)  =  Z  <->  ( F `  ( n  +  1 ) )  =  Z ) )
32 seqid2.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  x )  =  Z )
3332ralrimiva 2550 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  ( ( K  +  1 ) ... N ) ( F `  x
)  =  Z )
3433adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  A. x  e.  ( ( K  + 
1 ) ... N
) ( F `  x )  =  Z )
35 eluzp1p1 9555 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  K
)  ->  ( n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
3635ad2antrl 490 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
37 elfzuz3 10024 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( K ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
3837ad2antll 491 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
39 elfzuzb 10021 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( ( K  +  1 ) ... N )  <->  ( (
n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) )  /\  N  e.  ( ZZ>= `  ( n  +  1 ) ) ) )
4036, 38, 39sylanbrc 417 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( n  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
4131, 34, 40rspcdva 2848 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  Z )
4241oveq2d 5893 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  K
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq M
(  .+  ,  F
) `  K )  .+  Z ) )
43 oveq1 5884 . . . . . . . . . . 11  |-  ( x  =  (  seq M
(  .+  ,  F
) `  K )  ->  ( x  .+  Z
)  =  ( (  seq M (  .+  ,  F ) `  K
)  .+  Z )
)
44 id 19 . . . . . . . . . . 11  |-  ( x  =  (  seq M
(  .+  ,  F
) `  K )  ->  x  =  (  seq M (  .+  ,  F ) `  K
) )
4543, 44eqeq12d 2192 . . . . . . . . . 10  |-  ( x  =  (  seq M
(  .+  ,  F
) `  K )  ->  ( ( x  .+  Z )  =  x  <-> 
( (  seq M
(  .+  ,  F
) `  K )  .+  Z )  =  (  seq M (  .+  ,  F ) `  K
) ) )
46 seqid2.1 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  x )
4746ralrimiva 2550 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  ( x  .+  Z )  =  x )
48 seqid2.4 . . . . . . . . . 10  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  e.  S )
4945, 47, 48rspcdva 2848 . . . . . . . . 9  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  K )  .+  Z )  =  (  seq M (  .+  ,  F ) `  K
) )
5049adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  K
)  .+  Z )  =  (  seq M ( 
.+  ,  F ) `
 K ) )
5142, 50eqtr2d 2211 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  K
)  =  ( (  seq M (  .+  ,  F ) `  K
)  .+  ( F `  ( n  +  1 ) ) ) )
52 simprl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( ZZ>= `  K )
)
53 seqid2.2 . . . . . . . . . 10  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
5453adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  K  e.  ( ZZ>= `  M )
)
55 uztrn 9546 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
5652, 54, 55syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
57 seq3id2.f . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
5857adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) ) )  /\  x  e.  (
ZZ>= `  M ) )  ->  ( F `  x )  e.  S
)
59 seq3id2.cl . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
6059adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
6156, 58, 60seq3p1 10464 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
6251, 61eqeq12d 2192 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  <->  ( (  seq M (  .+  ,  F ) `  K
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
6330, 62imbitrrid 156 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
)  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) ) )
6429, 63animpimp2impd 559 . . . 4  |-  ( n  e.  ( ZZ>= `  K
)  ->  ( ( ph  ->  ( n  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
) ) )  -> 
( ph  ->  ( ( n  +  1 )  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) )
658, 13, 18, 23, 25, 64uzind4 9590 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) ) )
661, 65mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
673, 66mpd 13 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  (  seq M ( 
.+  ,  F ) `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   ` cfv 5218  (class class class)co 5877   1c1 7814    + caddc 7816   ZZcz 9255   ZZ>=cuz 9530   ...cfz 10010    seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-seqfrec 10448
This theorem is referenced by:  seq3coll  10824  fsum3cvg  11388  fproddccvg  11582  lgsdilem2  14522
  Copyright terms: Public domain W3C validator