ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3id2 Unicode version

Theorem seq3id2 10444
Description: The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for  .+) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.)
Hypotheses
Ref Expression
seqid2.1  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  x )
seqid2.2  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
seqid2.3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
seqid2.4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  e.  S )
seqid2.5  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  x )  =  Z )
seq3id2.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3id2.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3id2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  (  seq M ( 
.+  ,  F ) `
 N ) )
Distinct variable groups:    x, y, F   
x, K, y    x, M, y    x, N, y    ph, x, y    x, S, y    x,  .+ , y    x, Z
Allowed substitution hint:    Z( y)

Proof of Theorem seq3id2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seqid2.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 eluzfz2 9967 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ( K ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( K ... N ) )
4 eleq1 2229 . . . . . 6  |-  ( x  =  K  ->  (
x  e.  ( K ... N )  <->  K  e.  ( K ... N ) ) )
5 fveq2 5486 . . . . . . 7  |-  ( x  =  K  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  K
) )
65eqeq2d 2177 . . . . . 6  |-  ( x  =  K  ->  (
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 K ) ) )
74, 6imbi12d 233 . . . . 5  |-  ( x  =  K  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 x ) )  <-> 
( K  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 K ) ) ) )
87imbi2d 229 . . . 4  |-  ( x  =  K  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
) ) )  <->  ( ph  ->  ( K  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 K ) ) ) ) )
9 eleq1 2229 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( K ... N )  <->  n  e.  ( K ... N ) ) )
10 fveq2 5486 . . . . . . 7  |-  ( x  =  n  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  n
) )
1110eqeq2d 2177 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 n ) ) )
129, 11imbi12d 233 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 x ) )  <-> 
( n  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 n ) ) ) )
1312imbi2d 229 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
) ) )  <->  ( ph  ->  ( n  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 n ) ) ) ) )
14 eleq1 2229 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( K ... N )  <->  ( n  +  1 )  e.  ( K ... N
) ) )
15 fveq2 5486 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
1615eqeq2d 2177 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) ) )
1714, 16imbi12d 233 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 x ) )  <-> 
( ( n  + 
1 )  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) ) ) )
1817imbi2d 229 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) ) ) ) )
19 eleq1 2229 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( K ... N )  <->  N  e.  ( K ... N ) ) )
20 fveq2 5486 . . . . . . 7  |-  ( x  =  N  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  N
) )
2120eqeq2d 2177 . . . . . 6  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
2219, 21imbi12d 233 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 x ) )  <-> 
( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) ) )
2322imbi2d 229 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
) ) )  <->  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) ) ) )
24 eqidd 2166 . . . . 5  |-  ( K  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  K
) )
25242a1i 27 . . . 4  |-  ( K  e.  ZZ  ->  ( ph  ->  ( K  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  K
) ) ) )
26 peano2fzr 9972 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) )  ->  n  e.  ( K ... N ) )
2726adantl 275 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( K ... N ) )
2827expr 373 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  +  1 )  e.  ( K ... N )  ->  n  e.  ( K ... N
) ) )
2928imim1d 75 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
) )  ->  (
( n  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
30 oveq1 5849 . . . . . 6  |-  ( (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
)  ->  ( (  seq M (  .+  ,  F ) `  K
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) )
31 fveqeq2 5495 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  x
)  =  Z  <->  ( F `  ( n  +  1 ) )  =  Z ) )
32 seqid2.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  x )  =  Z )
3332ralrimiva 2539 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  ( ( K  +  1 ) ... N ) ( F `  x
)  =  Z )
3433adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  A. x  e.  ( ( K  + 
1 ) ... N
) ( F `  x )  =  Z )
35 eluzp1p1 9491 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  K
)  ->  ( n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
3635ad2antrl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
37 elfzuz3 9957 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( K ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
3837ad2antll 483 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
39 elfzuzb 9954 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( ( K  +  1 ) ... N )  <->  ( (
n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) )  /\  N  e.  ( ZZ>= `  ( n  +  1 ) ) ) )
4036, 38, 39sylanbrc 414 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( n  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
4131, 34, 40rspcdva 2835 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  Z )
4241oveq2d 5858 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  K
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq M
(  .+  ,  F
) `  K )  .+  Z ) )
43 oveq1 5849 . . . . . . . . . . 11  |-  ( x  =  (  seq M
(  .+  ,  F
) `  K )  ->  ( x  .+  Z
)  =  ( (  seq M (  .+  ,  F ) `  K
)  .+  Z )
)
44 id 19 . . . . . . . . . . 11  |-  ( x  =  (  seq M
(  .+  ,  F
) `  K )  ->  x  =  (  seq M (  .+  ,  F ) `  K
) )
4543, 44eqeq12d 2180 . . . . . . . . . 10  |-  ( x  =  (  seq M
(  .+  ,  F
) `  K )  ->  ( ( x  .+  Z )  =  x  <-> 
( (  seq M
(  .+  ,  F
) `  K )  .+  Z )  =  (  seq M (  .+  ,  F ) `  K
) ) )
46 seqid2.1 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  x )
4746ralrimiva 2539 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  ( x  .+  Z )  =  x )
48 seqid2.4 . . . . . . . . . 10  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  e.  S )
4945, 47, 48rspcdva 2835 . . . . . . . . 9  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  K )  .+  Z )  =  (  seq M (  .+  ,  F ) `  K
) )
5049adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  K
)  .+  Z )  =  (  seq M ( 
.+  ,  F ) `
 K ) )
5142, 50eqtr2d 2199 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  K
)  =  ( (  seq M (  .+  ,  F ) `  K
)  .+  ( F `  ( n  +  1 ) ) ) )
52 simprl 521 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( ZZ>= `  K )
)
53 seqid2.2 . . . . . . . . . 10  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
5453adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  K  e.  ( ZZ>= `  M )
)
55 uztrn 9482 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
5652, 54, 55syl2anc 409 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
57 seq3id2.f . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
5857adantlr 469 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) ) )  /\  x  e.  (
ZZ>= `  M ) )  ->  ( F `  x )  e.  S
)
59 seq3id2.cl . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
6059adantlr 469 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
6156, 58, 60seq3p1 10397 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
6251, 61eqeq12d 2180 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  <->  ( (  seq M (  .+  ,  F ) `  K
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
6330, 62syl5ibr 155 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
)  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) ) )
6429, 63animpimp2impd 549 . . . 4  |-  ( n  e.  ( ZZ>= `  K
)  ->  ( ( ph  ->  ( n  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
) ) )  -> 
( ph  ->  ( ( n  +  1 )  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) )
658, 13, 18, 23, 25, 64uzind4 9526 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) ) )
661, 65mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
673, 66mpd 13 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  (  seq M ( 
.+  ,  F ) `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   ` cfv 5188  (class class class)co 5842   1c1 7754    + caddc 7756   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944    seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-seqfrec 10381
This theorem is referenced by:  seq3coll  10755  fsum3cvg  11319  fproddccvg  11513  lgsdilem2  13577
  Copyright terms: Public domain W3C validator