Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3id2 | Unicode version |
Description: The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for ) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.) |
Ref | Expression |
---|---|
seqid2.1 | |
seqid2.2 | |
seqid2.3 | |
seqid2.4 | |
seqid2.5 | |
seq3id2.f | |
seq3id2.cl |
Ref | Expression |
---|---|
seq3id2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqid2.3 | . . 3 | |
2 | eluzfz2 9935 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | eleq1 2220 | . . . . . 6 | |
5 | fveq2 5469 | . . . . . . 7 | |
6 | 5 | eqeq2d 2169 | . . . . . 6 |
7 | 4, 6 | imbi12d 233 | . . . . 5 |
8 | 7 | imbi2d 229 | . . . 4 |
9 | eleq1 2220 | . . . . . 6 | |
10 | fveq2 5469 | . . . . . . 7 | |
11 | 10 | eqeq2d 2169 | . . . . . 6 |
12 | 9, 11 | imbi12d 233 | . . . . 5 |
13 | 12 | imbi2d 229 | . . . 4 |
14 | eleq1 2220 | . . . . . 6 | |
15 | fveq2 5469 | . . . . . . 7 | |
16 | 15 | eqeq2d 2169 | . . . . . 6 |
17 | 14, 16 | imbi12d 233 | . . . . 5 |
18 | 17 | imbi2d 229 | . . . 4 |
19 | eleq1 2220 | . . . . . 6 | |
20 | fveq2 5469 | . . . . . . 7 | |
21 | 20 | eqeq2d 2169 | . . . . . 6 |
22 | 19, 21 | imbi12d 233 | . . . . 5 |
23 | 22 | imbi2d 229 | . . . 4 |
24 | eqidd 2158 | . . . . 5 | |
25 | 24 | 2a1i 27 | . . . 4 |
26 | peano2fzr 9940 | . . . . . . . 8 | |
27 | 26 | adantl 275 | . . . . . . 7 |
28 | 27 | expr 373 | . . . . . 6 |
29 | 28 | imim1d 75 | . . . . 5 |
30 | oveq1 5832 | . . . . . 6 | |
31 | fveqeq2 5478 | . . . . . . . . . 10 | |
32 | seqid2.5 | . . . . . . . . . . . 12 | |
33 | 32 | ralrimiva 2530 | . . . . . . . . . . 11 |
34 | 33 | adantr 274 | . . . . . . . . . 10 |
35 | eluzp1p1 9465 | . . . . . . . . . . . 12 | |
36 | 35 | ad2antrl 482 | . . . . . . . . . . 11 |
37 | elfzuz3 9926 | . . . . . . . . . . . 12 | |
38 | 37 | ad2antll 483 | . . . . . . . . . . 11 |
39 | elfzuzb 9923 | . . . . . . . . . . 11 | |
40 | 36, 38, 39 | sylanbrc 414 | . . . . . . . . . 10 |
41 | 31, 34, 40 | rspcdva 2821 | . . . . . . . . 9 |
42 | 41 | oveq2d 5841 | . . . . . . . 8 |
43 | oveq1 5832 | . . . . . . . . . . 11 | |
44 | id 19 | . . . . . . . . . . 11 | |
45 | 43, 44 | eqeq12d 2172 | . . . . . . . . . 10 |
46 | seqid2.1 | . . . . . . . . . . 11 | |
47 | 46 | ralrimiva 2530 | . . . . . . . . . 10 |
48 | seqid2.4 | . . . . . . . . . 10 | |
49 | 45, 47, 48 | rspcdva 2821 | . . . . . . . . 9 |
50 | 49 | adantr 274 | . . . . . . . 8 |
51 | 42, 50 | eqtr2d 2191 | . . . . . . 7 |
52 | simprl 521 | . . . . . . . . 9 | |
53 | seqid2.2 | . . . . . . . . . 10 | |
54 | 53 | adantr 274 | . . . . . . . . 9 |
55 | uztrn 9456 | . . . . . . . . 9 | |
56 | 52, 54, 55 | syl2anc 409 | . . . . . . . 8 |
57 | seq3id2.f | . . . . . . . . 9 | |
58 | 57 | adantlr 469 | . . . . . . . 8 |
59 | seq3id2.cl | . . . . . . . . 9 | |
60 | 59 | adantlr 469 | . . . . . . . 8 |
61 | 56, 58, 60 | seq3p1 10365 | . . . . . . 7 |
62 | 51, 61 | eqeq12d 2172 | . . . . . 6 |
63 | 30, 62 | syl5ibr 155 | . . . . 5 |
64 | 29, 63 | animpimp2impd 549 | . . . 4 |
65 | 8, 13, 18, 23, 25, 64 | uzind4 9500 | . . 3 |
66 | 1, 65 | mpcom 36 | . 2 |
67 | 3, 66 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 wral 2435 cfv 5171 (class class class)co 5825 c1 7734 caddc 7736 cz 9168 cuz 9440 cfz 9913 cseq 10348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4080 ax-sep 4083 ax-nul 4091 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-iinf 4548 ax-cnex 7824 ax-resscn 7825 ax-1cn 7826 ax-1re 7827 ax-icn 7828 ax-addcl 7829 ax-addrcl 7830 ax-mulcl 7831 ax-addcom 7833 ax-addass 7835 ax-distr 7837 ax-i2m1 7838 ax-0lt1 7839 ax-0id 7841 ax-rnegex 7842 ax-cnre 7844 ax-pre-ltirr 7845 ax-pre-ltwlin 7846 ax-pre-lttrn 7847 ax-pre-ltadd 7849 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-int 3809 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-tr 4064 df-id 4254 df-iord 4327 df-on 4329 df-ilim 4330 df-suc 4332 df-iom 4551 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 df-fv 5179 df-riota 5781 df-ov 5828 df-oprab 5829 df-mpo 5830 df-1st 6089 df-2nd 6090 df-recs 6253 df-frec 6339 df-pnf 7915 df-mnf 7916 df-xr 7917 df-ltxr 7918 df-le 7919 df-sub 8049 df-neg 8050 df-inn 8835 df-n0 9092 df-z 9169 df-uz 9441 df-fz 9914 df-seqfrec 10349 |
This theorem is referenced by: seq3coll 10717 fsum3cvg 11279 fproddccvg 11473 |
Copyright terms: Public domain | W3C validator |