ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3id2 Unicode version

Theorem seq3id2 10618
Description: The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for  .+) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.)
Hypotheses
Ref Expression
seqid2.1  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  x )
seqid2.2  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
seqid2.3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
seqid2.4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  e.  S )
seqid2.5  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  x )  =  Z )
seq3id2.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3id2.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3id2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  (  seq M ( 
.+  ,  F ) `
 N ) )
Distinct variable groups:    x, y, F   
x, K, y    x, M, y    x, N, y    ph, x, y    x, S, y    x,  .+ , y    x, Z
Allowed substitution hint:    Z( y)

Proof of Theorem seq3id2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seqid2.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 eluzfz2 10107 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ( K ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( K ... N ) )
4 eleq1 2259 . . . . . 6  |-  ( x  =  K  ->  (
x  e.  ( K ... N )  <->  K  e.  ( K ... N ) ) )
5 fveq2 5558 . . . . . . 7  |-  ( x  =  K  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  K
) )
65eqeq2d 2208 . . . . . 6  |-  ( x  =  K  ->  (
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 K ) ) )
74, 6imbi12d 234 . . . . 5  |-  ( x  =  K  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 x ) )  <-> 
( K  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 K ) ) ) )
87imbi2d 230 . . . 4  |-  ( x  =  K  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
) ) )  <->  ( ph  ->  ( K  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 K ) ) ) ) )
9 eleq1 2259 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( K ... N )  <->  n  e.  ( K ... N ) ) )
10 fveq2 5558 . . . . . . 7  |-  ( x  =  n  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  n
) )
1110eqeq2d 2208 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 n ) ) )
129, 11imbi12d 234 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 x ) )  <-> 
( n  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 n ) ) ) )
1312imbi2d 230 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
) ) )  <->  ( ph  ->  ( n  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 n ) ) ) ) )
14 eleq1 2259 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( K ... N )  <->  ( n  +  1 )  e.  ( K ... N
) ) )
15 fveq2 5558 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
1615eqeq2d 2208 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) ) )
1714, 16imbi12d 234 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 x ) )  <-> 
( ( n  + 
1 )  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) ) ) )
1817imbi2d 230 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) ) ) ) )
19 eleq1 2259 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( K ... N )  <->  N  e.  ( K ... N ) ) )
20 fveq2 5558 . . . . . . 7  |-  ( x  =  N  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  N
) )
2120eqeq2d 2208 . . . . . 6  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
)  <->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
2219, 21imbi12d 234 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 x ) )  <-> 
( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) ) )
2322imbi2d 230 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  x
) ) )  <->  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) ) ) )
24 eqidd 2197 . . . . 5  |-  ( K  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  K
) )
25242a1i 27 . . . 4  |-  ( K  e.  ZZ  ->  ( ph  ->  ( K  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  K
) ) ) )
26 peano2fzr 10112 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) )  ->  n  e.  ( K ... N ) )
2726adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( K ... N ) )
2827expr 375 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  +  1 )  e.  ( K ... N )  ->  n  e.  ( K ... N
) ) )
2928imim1d 75 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
) )  ->  (
( n  +  1 )  e.  ( K ... N )  -> 
(  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
) ) ) )
30 oveq1 5929 . . . . . 6  |-  ( (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
)  ->  ( (  seq M (  .+  ,  F ) `  K
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) )
31 fveqeq2 5567 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  x
)  =  Z  <->  ( F `  ( n  +  1 ) )  =  Z ) )
32 seqid2.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  x )  =  Z )
3332ralrimiva 2570 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  ( ( K  +  1 ) ... N ) ( F `  x
)  =  Z )
3433adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  A. x  e.  ( ( K  + 
1 ) ... N
) ( F `  x )  =  Z )
35 eluzp1p1 9627 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  K
)  ->  ( n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
3635ad2antrl 490 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
37 elfzuz3 10097 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( K ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
3837ad2antll 491 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
39 elfzuzb 10094 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  ( ( K  +  1 ) ... N )  <->  ( (
n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) )  /\  N  e.  ( ZZ>= `  ( n  +  1 ) ) ) )
4036, 38, 39sylanbrc 417 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( n  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
4131, 34, 40rspcdva 2873 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  Z )
4241oveq2d 5938 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  K
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq M
(  .+  ,  F
) `  K )  .+  Z ) )
43 oveq1 5929 . . . . . . . . . . 11  |-  ( x  =  (  seq M
(  .+  ,  F
) `  K )  ->  ( x  .+  Z
)  =  ( (  seq M (  .+  ,  F ) `  K
)  .+  Z )
)
44 id 19 . . . . . . . . . . 11  |-  ( x  =  (  seq M
(  .+  ,  F
) `  K )  ->  x  =  (  seq M (  .+  ,  F ) `  K
) )
4543, 44eqeq12d 2211 . . . . . . . . . 10  |-  ( x  =  (  seq M
(  .+  ,  F
) `  K )  ->  ( ( x  .+  Z )  =  x  <-> 
( (  seq M
(  .+  ,  F
) `  K )  .+  Z )  =  (  seq M (  .+  ,  F ) `  K
) ) )
46 seqid2.1 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  x )
4746ralrimiva 2570 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  ( x  .+  Z )  =  x )
48 seqid2.4 . . . . . . . . . 10  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  e.  S )
4945, 47, 48rspcdva 2873 . . . . . . . . 9  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  K )  .+  Z )  =  (  seq M (  .+  ,  F ) `  K
) )
5049adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  K
)  .+  Z )  =  (  seq M ( 
.+  ,  F ) `
 K ) )
5142, 50eqtr2d 2230 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  K
)  =  ( (  seq M (  .+  ,  F ) `  K
)  .+  ( F `  ( n  +  1 ) ) ) )
52 simprl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( ZZ>= `  K )
)
53 seqid2.2 . . . . . . . . . 10  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
5453adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  K  e.  ( ZZ>= `  M )
)
55 uztrn 9618 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
5652, 54, 55syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
57 seq3id2.f . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
5857adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) ) )  /\  x  e.  (
ZZ>= `  M ) )  ->  ( F `  x )  e.  S
)
59 seq3id2.cl . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
6059adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
6156, 58, 60seq3p1 10557 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
6251, 61eqeq12d 2211 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  <->  ( (  seq M (  .+  ,  F ) `  K
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
6330, 62imbitrrid 156 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
)  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) ) )
6429, 63animpimp2impd 559 . . . 4  |-  ( n  e.  ( ZZ>= `  K
)  ->  ( ( ph  ->  ( n  e.  ( K ... N
)  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  n
) ) )  -> 
( ph  ->  ( ( n  +  1 )  e.  ( K ... N )  ->  (  seq M (  .+  ,  F ) `  K
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) )
658, 13, 18, 23, 25, 64uzind4 9662 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) ) )
661, 65mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq M
(  .+  ,  F
) `  K )  =  (  seq M ( 
.+  ,  F ) `
 N ) ) )
673, 66mpd 13 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 K )  =  (  seq M ( 
.+  ,  F ) `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5258  (class class class)co 5922   1c1 7880    + caddc 7882   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540
This theorem is referenced by:  seq3coll  10934  fsum3cvg  11543  fproddccvg  11737  lgsdilem2  15277
  Copyright terms: Public domain W3C validator