Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3id2 | Unicode version |
Description: The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for ) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.) |
Ref | Expression |
---|---|
seqid2.1 | |
seqid2.2 | |
seqid2.3 | |
seqid2.4 | |
seqid2.5 | |
seq3id2.f | |
seq3id2.cl |
Ref | Expression |
---|---|
seq3id2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqid2.3 | . . 3 | |
2 | eluzfz2 9967 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | eleq1 2229 | . . . . . 6 | |
5 | fveq2 5486 | . . . . . . 7 | |
6 | 5 | eqeq2d 2177 | . . . . . 6 |
7 | 4, 6 | imbi12d 233 | . . . . 5 |
8 | 7 | imbi2d 229 | . . . 4 |
9 | eleq1 2229 | . . . . . 6 | |
10 | fveq2 5486 | . . . . . . 7 | |
11 | 10 | eqeq2d 2177 | . . . . . 6 |
12 | 9, 11 | imbi12d 233 | . . . . 5 |
13 | 12 | imbi2d 229 | . . . 4 |
14 | eleq1 2229 | . . . . . 6 | |
15 | fveq2 5486 | . . . . . . 7 | |
16 | 15 | eqeq2d 2177 | . . . . . 6 |
17 | 14, 16 | imbi12d 233 | . . . . 5 |
18 | 17 | imbi2d 229 | . . . 4 |
19 | eleq1 2229 | . . . . . 6 | |
20 | fveq2 5486 | . . . . . . 7 | |
21 | 20 | eqeq2d 2177 | . . . . . 6 |
22 | 19, 21 | imbi12d 233 | . . . . 5 |
23 | 22 | imbi2d 229 | . . . 4 |
24 | eqidd 2166 | . . . . 5 | |
25 | 24 | 2a1i 27 | . . . 4 |
26 | peano2fzr 9972 | . . . . . . . 8 | |
27 | 26 | adantl 275 | . . . . . . 7 |
28 | 27 | expr 373 | . . . . . 6 |
29 | 28 | imim1d 75 | . . . . 5 |
30 | oveq1 5849 | . . . . . 6 | |
31 | fveqeq2 5495 | . . . . . . . . . 10 | |
32 | seqid2.5 | . . . . . . . . . . . 12 | |
33 | 32 | ralrimiva 2539 | . . . . . . . . . . 11 |
34 | 33 | adantr 274 | . . . . . . . . . 10 |
35 | eluzp1p1 9491 | . . . . . . . . . . . 12 | |
36 | 35 | ad2antrl 482 | . . . . . . . . . . 11 |
37 | elfzuz3 9957 | . . . . . . . . . . . 12 | |
38 | 37 | ad2antll 483 | . . . . . . . . . . 11 |
39 | elfzuzb 9954 | . . . . . . . . . . 11 | |
40 | 36, 38, 39 | sylanbrc 414 | . . . . . . . . . 10 |
41 | 31, 34, 40 | rspcdva 2835 | . . . . . . . . 9 |
42 | 41 | oveq2d 5858 | . . . . . . . 8 |
43 | oveq1 5849 | . . . . . . . . . . 11 | |
44 | id 19 | . . . . . . . . . . 11 | |
45 | 43, 44 | eqeq12d 2180 | . . . . . . . . . 10 |
46 | seqid2.1 | . . . . . . . . . . 11 | |
47 | 46 | ralrimiva 2539 | . . . . . . . . . 10 |
48 | seqid2.4 | . . . . . . . . . 10 | |
49 | 45, 47, 48 | rspcdva 2835 | . . . . . . . . 9 |
50 | 49 | adantr 274 | . . . . . . . 8 |
51 | 42, 50 | eqtr2d 2199 | . . . . . . 7 |
52 | simprl 521 | . . . . . . . . 9 | |
53 | seqid2.2 | . . . . . . . . . 10 | |
54 | 53 | adantr 274 | . . . . . . . . 9 |
55 | uztrn 9482 | . . . . . . . . 9 | |
56 | 52, 54, 55 | syl2anc 409 | . . . . . . . 8 |
57 | seq3id2.f | . . . . . . . . 9 | |
58 | 57 | adantlr 469 | . . . . . . . 8 |
59 | seq3id2.cl | . . . . . . . . 9 | |
60 | 59 | adantlr 469 | . . . . . . . 8 |
61 | 56, 58, 60 | seq3p1 10397 | . . . . . . 7 |
62 | 51, 61 | eqeq12d 2180 | . . . . . 6 |
63 | 30, 62 | syl5ibr 155 | . . . . 5 |
64 | 29, 63 | animpimp2impd 549 | . . . 4 |
65 | 8, 13, 18, 23, 25, 64 | uzind4 9526 | . . 3 |
66 | 1, 65 | mpcom 36 | . 2 |
67 | 3, 66 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 cfv 5188 (class class class)co 5842 c1 7754 caddc 7756 cz 9191 cuz 9466 cfz 9944 cseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-seqfrec 10381 |
This theorem is referenced by: seq3coll 10755 fsum3cvg 11319 fproddccvg 11513 lgsdilem2 13577 |
Copyright terms: Public domain | W3C validator |