ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3split Unicode version

Theorem seq3split 10435
Description: Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.)
Hypotheses
Ref Expression
seq3split.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3split.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
seq3split.3  |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1
) ) )
seq3split.4  |-  ( ph  ->  M  e.  ( ZZ>= `  K ) )
seq3split.5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( F `  x )  e.  S
)
Assertion
Ref Expression
seq3split  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 N )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  N )
) )
Distinct variable groups:    x, y, z, F    x, K, y, z    x, M, y, z    ph, x, y, z   
x, N, y, z   
x,  .+ , y, z    x, S, y, z

Proof of Theorem seq3split
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seq3split.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1
) ) )
2 eluzfz2 9988 . . 3  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  ->  N  e.  ( ( M  + 
1 ) ... N
) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( ( M  +  1 ) ... N ) )
4 eleq1 2233 . . . . . 6  |-  ( x  =  ( M  + 
1 )  ->  (
x  e.  ( ( M  +  1 ) ... N )  <->  ( M  +  1 )  e.  ( ( M  + 
1 ) ... N
) ) )
5 fveq2 5496 . . . . . . 7  |-  ( x  =  ( M  + 
1 )  ->  (  seq K (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  F ) `  ( M  +  1 ) ) )
6 fveq2 5496 . . . . . . . 8  |-  ( x  =  ( M  + 
1 )  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  x
)  =  (  seq ( M  +  1 ) (  .+  ,  F ) `  ( M  +  1 ) ) )
76oveq2d 5869 . . . . . . 7  |-  ( x  =  ( M  + 
1 )  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  F ) `  ( M  +  1 ) ) ) )
85, 7eqeq12d 2185 . . . . . 6  |-  ( x  =  ( M  + 
1 )  ->  (
(  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  <->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) )
94, 8imbi12d 233 . . . . 5  |-  ( x  =  ( M  + 
1 )  ->  (
( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  x )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) )  <->  ( ( M  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) ) )
109imbi2d 229 . . . 4  |-  ( x  =  ( M  + 
1 )  ->  (
( ph  ->  ( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) ) )  <-> 
( ph  ->  ( ( M  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) ) ) )
11 eleq1 2233 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( ( M  +  1 ) ... N )  <->  n  e.  ( ( M  + 
1 ) ... N
) ) )
12 fveq2 5496 . . . . . . 7  |-  ( x  =  n  ->  (  seq K (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  F ) `  n
) )
13 fveq2 5496 . . . . . . . 8  |-  ( x  =  n  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  x
)  =  (  seq ( M  +  1 ) (  .+  ,  F ) `  n
) )
1413oveq2d 5869 . . . . . . 7  |-  ( x  =  n  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  F ) `  n
) ) )
1512, 14eqeq12d 2185 . . . . . 6  |-  ( x  =  n  ->  (
(  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  <->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) )
1611, 15imbi12d 233 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  x )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) )  <->  ( n  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) ) )
1716imbi2d 229 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) ) )  <-> 
( ph  ->  ( n  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) ) ) )
18 eleq1 2233 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( ( M  +  1 ) ... N )  <->  ( n  +  1 )  e.  ( ( M  + 
1 ) ... N
) ) )
19 fveq2 5496 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq K (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  F ) `  (
n  +  1 ) ) )
20 fveq2 5496 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  x
)  =  (  seq ( M  +  1 ) (  .+  ,  F ) `  (
n  +  1 ) ) )
2120oveq2d 5869 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  F ) `  (
n  +  1 ) ) ) )
2219, 21eqeq12d 2185 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  <->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) )
2318, 22imbi12d 233 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  x )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) )  <->  ( (
n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) )
2423imbi2d 229 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) ) )  <-> 
( ph  ->  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) ) )
25 eleq1 2233 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( ( M  +  1 ) ... N )  <->  N  e.  ( ( M  + 
1 ) ... N
) ) )
26 fveq2 5496 . . . . . . 7  |-  ( x  =  N  ->  (  seq K (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  F ) `  N
) )
27 fveq2 5496 . . . . . . . 8  |-  ( x  =  N  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  x
)  =  (  seq ( M  +  1 ) (  .+  ,  F ) `  N
) )
2827oveq2d 5869 . . . . . . 7  |-  ( x  =  N  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  F ) `  N
) ) )
2926, 28eqeq12d 2185 . . . . . 6  |-  ( x  =  N  ->  (
(  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  <->  (  seq K (  .+  ,  F ) `  N
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) )
3025, 29imbi12d 233 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  x )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) )  <->  ( N  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  N
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) ) )
3130imbi2d 229 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) ) )  <-> 
( ph  ->  ( N  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  N
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) ) ) )
32 seq3split.4 . . . . . . 7  |-  ( ph  ->  M  e.  ( ZZ>= `  K ) )
33 seq3split.5 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( F `  x )  e.  S
)
34 seq3split.1 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3532, 33, 34seq3p1 10418 . . . . . 6  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 ( M  + 
1 ) )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  ( F `  ( M  +  1 ) ) ) )
36 eluzel2 9492 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( M  +  1 )  e.  ZZ )
371, 36syl 14 . . . . . . . 8  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
38 simpl 108 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ph )
39 eluzel2 9492 . . . . . . . . . . . 12  |-  ( M  e.  ( ZZ>= `  K
)  ->  K  e.  ZZ )
4032, 39syl 14 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  ZZ )
4140adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  K  e.  ZZ )
42 eluzelz 9496 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  ( M  +  1 ) )  ->  x  e.  ZZ )
4342adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  ZZ )
4441zred 9334 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  K  e.  RR )
45 eluzelz 9496 . . . . . . . . . . . . . 14  |-  ( M  e.  ( ZZ>= `  K
)  ->  M  e.  ZZ )
4632, 45syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
4746zred 9334 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  RR )
4847adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  RR )
4943zred 9334 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  RR )
50 eluzle 9499 . . . . . . . . . . . . 13  |-  ( M  e.  ( ZZ>= `  K
)  ->  K  <_  M )
5132, 50syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  K  <_  M )
5251adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  K  <_  M )
53 peano2re 8055 . . . . . . . . . . . . 13  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
5448, 53syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M  +  1 )  e.  RR )
5548lep1d 8847 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  <_  ( M  +  1 ) )
56 eluzle 9499 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( M  +  1 )  <_  x )
5756adantl 275 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M  +  1 )  <_  x )
5848, 54, 49, 55, 57letrd 8043 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  <_  x )
5944, 48, 49, 52, 58letrd 8043 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  K  <_  x )
60 eluz2 9493 . . . . . . . . . 10  |-  ( x  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  x  e.  ZZ  /\  K  <_  x ) )
6141, 43, 59, 60syl3anbrc 1176 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  ( ZZ>= `  K )
)
6238, 61, 33syl2anc 409 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  S
)
6337, 62, 34seq3-1 10416 . . . . . . 7  |-  ( ph  ->  (  seq ( M  +  1 ) ( 
.+  ,  F ) `
 ( M  + 
1 ) )  =  ( F `  ( M  +  1 ) ) )
6463oveq2d 5869 . . . . . 6  |-  ( ph  ->  ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  ( M  +  1 ) ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  ( F `  ( M  +  1 ) ) ) )
6535, 64eqtr4d 2206 . . . . 5  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 ( M  + 
1 ) )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  ( M  +  1 ) ) ) )
6665a1i13 24 . . . 4  |-  ( ( M  +  1 )  e.  ZZ  ->  ( ph  ->  ( ( M  +  1 )  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) ) )
67 peano2fzr 9993 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) )  ->  n  e.  ( ( M  +  1 ) ... N ) )
6867adantl 275 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  n  e.  ( ( M  + 
1 ) ... N
) )
6968expr 373 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  n  e.  ( ( M  + 
1 ) ... N
) ) )
7069imim1d 75 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
n  e.  ( ( M  +  1 ) ... N )  -> 
(  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) )  -> 
( ( n  + 
1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  n )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) ) )
71 oveq1 5860 . . . . . 6  |-  ( (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  ->  (
(  seq K (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  .+  ( F `  ( n  +  1 ) ) ) )
72 simprl 526 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  n  e.  ( ZZ>= `  ( M  +  1 ) ) )
73 peano2uz 9542 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  K
)  ->  ( M  +  1 )  e.  ( ZZ>= `  K )
)
7432, 73syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= `  K ) )
7574adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  ( M  +  1 )  e.  ( ZZ>= `  K
) )
76 uztrn 9503 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  ( M  +  1
) )  /\  ( M  +  1 )  e.  ( ZZ>= `  K
) )  ->  n  e.  ( ZZ>= `  K )
)
7772, 75, 76syl2anc 409 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  n  e.  ( ZZ>= `  K )
)
7833adantlr 474 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) ) )  /\  x  e.  (
ZZ>= `  K ) )  ->  ( F `  x )  e.  S
)
7934adantlr 474 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
8077, 78, 79seq3p1 10418 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
8162adantlr 474 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) ) )  /\  x  e.  (
ZZ>= `  ( M  + 
1 ) ) )  ->  ( F `  x )  e.  S
)
8272, 81, 79seq3p1 10418 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq ( M  + 
1 ) (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
8382oveq2d 5869 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  ( (  seq ( M  +  1 ) (  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
84 simpl 108 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  ph )
85 eqid 2170 . . . . . . . . . . . 12  |-  ( ZZ>= `  K )  =  (
ZZ>= `  K )
8685, 40, 33, 34seqf 10417 . . . . . . . . . . 11  |-  ( ph  ->  seq K (  .+  ,  F ) : (
ZZ>= `  K ) --> S )
8786, 32ffvelrnd 5632 . . . . . . . . . 10  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 M )  e.  S )
8887adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (  seq K (  .+  ,  F ) `  M
)  e.  S )
89 eqid 2170 . . . . . . . . . . 11  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
9037adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  ( M  +  1 )  e.  ZZ )
9189, 90, 81, 79seqf 10417 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  seq ( M  +  1
) (  .+  ,  F ) : (
ZZ>= `  ( M  + 
1 ) ) --> S )
9291, 72ffvelrnd 5632 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  n
)  e.  S )
93 fveq2 5496 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
9493eleq1d 2239 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( n  +  1 ) )  e.  S
) )
9533ralrimiva 2543 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  (
ZZ>= `  K ) ( F `  x )  e.  S )
9695adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  A. x  e.  ( ZZ>= `  K )
( F `  x
)  e.  S )
97 fzssuz 10021 . . . . . . . . . . . 12  |-  ( ( M  +  1 ) ... N )  C_  ( ZZ>= `  ( M  +  1 ) )
98 uzss 9507 . . . . . . . . . . . . 13  |-  ( ( M  +  1 )  e.  ( ZZ>= `  K
)  ->  ( ZZ>= `  ( M  +  1
) )  C_  ( ZZ>=
`  K ) )
9974, 98syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  ( ZZ>= `  K
) )
10097, 99sstrid 3158 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( ZZ>= `  K ) )
101 simpr 109 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) )  -> 
( n  +  1 )  e.  ( ( M  +  1 ) ... N ) )
102 ssel2 3142 . . . . . . . . . . 11  |-  ( ( ( ( M  + 
1 ) ... N
)  C_  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) )  -> 
( n  +  1 )  e.  ( ZZ>= `  K ) )
103100, 101, 102syl2an 287 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
n  +  1 )  e.  ( ZZ>= `  K
) )
10494, 96, 103rspcdva 2839 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  ( F `  ( n  +  1 ) )  e.  S )
105 seq3split.2 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
106105caovassg 6011 . . . . . . . . 9  |-  ( (
ph  /\  ( (  seq K (  .+  ,  F ) `  M
)  e.  S  /\  (  seq ( M  + 
1 ) (  .+  ,  F ) `  n
)  e.  S  /\  ( F `  ( n  +  1 ) )  e.  S ) )  ->  ( ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  ( (  seq ( M  +  1 ) (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) ) )
10784, 88, 92, 104, 106syl13anc 1235 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  n )
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  ( (  seq ( M  +  1 ) (  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
10883, 107eqtr4d 2206 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) )  =  ( ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  n )
)  .+  ( F `  ( n  +  1 ) ) ) )
10980, 108eqeq12d 2185 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
(  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) )  <->  ( (  seq K (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  .+  ( F `  ( n  +  1 ) ) ) ) )
11071, 109syl5ibr 155 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
(  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) )
11170, 110animpimp2impd 554 . . . 4  |-  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( ( ph  ->  ( n  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) )  ->  ( ph  ->  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  -> 
(  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) ) )
11210, 17, 24, 31, 66, 111uzind4 9547 . . 3  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( ph  ->  ( N  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  N )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) ) )
1131, 112mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  N )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) )
1143, 113mpd 13 1  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 N )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448    C_ wss 3121   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   RRcr 7773   1c1 7775    + caddc 7777    <_ cle 7955   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-seqfrec 10402
This theorem is referenced by:  seq3-1p  10436  seq3f1olemqsumk  10455  seq3f1olemqsum  10456  bcval5  10697  clim2ser  11300  clim2ser2  11301  isumsplit  11454  cvgratnnlemseq  11489  clim2divap  11503
  Copyright terms: Public domain W3C validator