ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3split Unicode version

Theorem seq3split 10192
Description: Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.)
Hypotheses
Ref Expression
seq3split.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3split.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
seq3split.3  |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1
) ) )
seq3split.4  |-  ( ph  ->  M  e.  ( ZZ>= `  K ) )
seq3split.5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( F `  x )  e.  S
)
Assertion
Ref Expression
seq3split  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 N )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  N )
) )
Distinct variable groups:    x, y, z, F    x, K, y, z    x, M, y, z    ph, x, y, z   
x, N, y, z   
x,  .+ , y, z    x, S, y, z

Proof of Theorem seq3split
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seq3split.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1
) ) )
2 eluzfz2 9752 . . 3  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  ->  N  e.  ( ( M  + 
1 ) ... N
) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( ( M  +  1 ) ... N ) )
4 eleq1 2178 . . . . . 6  |-  ( x  =  ( M  + 
1 )  ->  (
x  e.  ( ( M  +  1 ) ... N )  <->  ( M  +  1 )  e.  ( ( M  + 
1 ) ... N
) ) )
5 fveq2 5387 . . . . . . 7  |-  ( x  =  ( M  + 
1 )  ->  (  seq K (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  F ) `  ( M  +  1 ) ) )
6 fveq2 5387 . . . . . . . 8  |-  ( x  =  ( M  + 
1 )  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  x
)  =  (  seq ( M  +  1 ) (  .+  ,  F ) `  ( M  +  1 ) ) )
76oveq2d 5756 . . . . . . 7  |-  ( x  =  ( M  + 
1 )  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  F ) `  ( M  +  1 ) ) ) )
85, 7eqeq12d 2130 . . . . . 6  |-  ( x  =  ( M  + 
1 )  ->  (
(  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  <->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) )
94, 8imbi12d 233 . . . . 5  |-  ( x  =  ( M  + 
1 )  ->  (
( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  x )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) )  <->  ( ( M  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) ) )
109imbi2d 229 . . . 4  |-  ( x  =  ( M  + 
1 )  ->  (
( ph  ->  ( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) ) )  <-> 
( ph  ->  ( ( M  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) ) ) )
11 eleq1 2178 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( ( M  +  1 ) ... N )  <->  n  e.  ( ( M  + 
1 ) ... N
) ) )
12 fveq2 5387 . . . . . . 7  |-  ( x  =  n  ->  (  seq K (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  F ) `  n
) )
13 fveq2 5387 . . . . . . . 8  |-  ( x  =  n  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  x
)  =  (  seq ( M  +  1 ) (  .+  ,  F ) `  n
) )
1413oveq2d 5756 . . . . . . 7  |-  ( x  =  n  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  F ) `  n
) ) )
1512, 14eqeq12d 2130 . . . . . 6  |-  ( x  =  n  ->  (
(  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  <->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) )
1611, 15imbi12d 233 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  x )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) )  <->  ( n  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) ) )
1716imbi2d 229 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) ) )  <-> 
( ph  ->  ( n  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) ) ) )
18 eleq1 2178 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( ( M  +  1 ) ... N )  <->  ( n  +  1 )  e.  ( ( M  + 
1 ) ... N
) ) )
19 fveq2 5387 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq K (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  F ) `  (
n  +  1 ) ) )
20 fveq2 5387 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  x
)  =  (  seq ( M  +  1 ) (  .+  ,  F ) `  (
n  +  1 ) ) )
2120oveq2d 5756 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  F ) `  (
n  +  1 ) ) ) )
2219, 21eqeq12d 2130 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  <->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) )
2318, 22imbi12d 233 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  x )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) )  <->  ( (
n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) )
2423imbi2d 229 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) ) )  <-> 
( ph  ->  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) ) )
25 eleq1 2178 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( ( M  +  1 ) ... N )  <->  N  e.  ( ( M  + 
1 ) ... N
) ) )
26 fveq2 5387 . . . . . . 7  |-  ( x  =  N  ->  (  seq K (  .+  ,  F ) `  x
)  =  (  seq K (  .+  ,  F ) `  N
) )
27 fveq2 5387 . . . . . . . 8  |-  ( x  =  N  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  x
)  =  (  seq ( M  +  1 ) (  .+  ,  F ) `  N
) )
2827oveq2d 5756 . . . . . . 7  |-  ( x  =  N  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  F ) `  N
) ) )
2926, 28eqeq12d 2130 . . . . . 6  |-  ( x  =  N  ->  (
(  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) )  <->  (  seq K (  .+  ,  F ) `  N
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) )
3025, 29imbi12d 233 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  x )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) )  <->  ( N  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  N
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) ) )
3130imbi2d 229 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  x
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  x
) ) ) )  <-> 
( ph  ->  ( N  e.  ( ( M  +  1 ) ... N )  ->  (  seq K (  .+  ,  F ) `  N
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) ) ) )
32 seq3split.4 . . . . . . 7  |-  ( ph  ->  M  e.  ( ZZ>= `  K ) )
33 seq3split.5 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( F `  x )  e.  S
)
34 seq3split.1 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3532, 33, 34seq3p1 10175 . . . . . 6  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 ( M  + 
1 ) )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  ( F `  ( M  +  1 ) ) ) )
36 eluzel2 9280 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( M  +  1 )  e.  ZZ )
371, 36syl 14 . . . . . . . 8  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
38 simpl 108 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ph )
39 eluzel2 9280 . . . . . . . . . . . 12  |-  ( M  e.  ( ZZ>= `  K
)  ->  K  e.  ZZ )
4032, 39syl 14 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  ZZ )
4140adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  K  e.  ZZ )
42 eluzelz 9284 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  ( M  +  1 ) )  ->  x  e.  ZZ )
4342adantl 273 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  ZZ )
4441zred 9124 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  K  e.  RR )
45 eluzelz 9284 . . . . . . . . . . . . . 14  |-  ( M  e.  ( ZZ>= `  K
)  ->  M  e.  ZZ )
4632, 45syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
4746zred 9124 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  RR )
4847adantr 272 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  RR )
4943zred 9124 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  RR )
50 eluzle 9287 . . . . . . . . . . . . 13  |-  ( M  e.  ( ZZ>= `  K
)  ->  K  <_  M )
5132, 50syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  K  <_  M )
5251adantr 272 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  K  <_  M )
53 peano2re 7862 . . . . . . . . . . . . 13  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
5448, 53syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M  +  1 )  e.  RR )
5548lep1d 8646 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  <_  ( M  +  1 ) )
56 eluzle 9287 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( M  +  1 )  <_  x )
5756adantl 273 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M  +  1 )  <_  x )
5848, 54, 49, 55, 57letrd 7850 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  <_  x )
5944, 48, 49, 52, 58letrd 7850 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  K  <_  x )
60 eluz2 9281 . . . . . . . . . 10  |-  ( x  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  x  e.  ZZ  /\  K  <_  x ) )
6141, 43, 59, 60syl3anbrc 1148 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  ( ZZ>= `  K )
)
6238, 61, 33syl2anc 406 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  S
)
6337, 62, 34seq3-1 10173 . . . . . . 7  |-  ( ph  ->  (  seq ( M  +  1 ) ( 
.+  ,  F ) `
 ( M  + 
1 ) )  =  ( F `  ( M  +  1 ) ) )
6463oveq2d 5756 . . . . . 6  |-  ( ph  ->  ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  ( M  +  1 ) ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  ( F `  ( M  +  1 ) ) ) )
6535, 64eqtr4d 2151 . . . . 5  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 ( M  + 
1 ) )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  ( M  +  1 ) ) ) )
6665a1i13 24 . . . 4  |-  ( ( M  +  1 )  e.  ZZ  ->  ( ph  ->  ( ( M  +  1 )  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  ( M  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  ( M  +  1 ) ) ) ) ) )
67 peano2fzr 9757 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) )  ->  n  e.  ( ( M  +  1 ) ... N ) )
6867adantl 273 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  n  e.  ( ( M  + 
1 ) ... N
) )
6968expr 370 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  n  e.  ( ( M  + 
1 ) ... N
) ) )
7069imim1d 75 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
n  e.  ( ( M  +  1 ) ... N )  -> 
(  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) )  -> 
( ( n  + 
1 )  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  n )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) ) )
71 oveq1 5747 . . . . . 6  |-  ( (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  ->  (
(  seq K (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  .+  ( F `  ( n  +  1 ) ) ) )
72 simprl 503 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  n  e.  ( ZZ>= `  ( M  +  1 ) ) )
73 peano2uz 9327 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  K
)  ->  ( M  +  1 )  e.  ( ZZ>= `  K )
)
7432, 73syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= `  K ) )
7574adantr 272 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  ( M  +  1 )  e.  ( ZZ>= `  K
) )
76 uztrn 9291 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= `  ( M  +  1
) )  /\  ( M  +  1 )  e.  ( ZZ>= `  K
) )  ->  n  e.  ( ZZ>= `  K )
)
7772, 75, 76syl2anc 406 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  n  e.  ( ZZ>= `  K )
)
7833adantlr 466 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) ) )  /\  x  e.  (
ZZ>= `  K ) )  ->  ( F `  x )  e.  S
)
7934adantlr 466 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
8077, 78, 79seq3p1 10175 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
8162adantlr 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) ) )  /\  x  e.  (
ZZ>= `  ( M  + 
1 ) ) )  ->  ( F `  x )  e.  S
)
8272, 81, 79seq3p1 10175 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq ( M  + 
1 ) (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
8382oveq2d 5756 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) )  =  ( (  seq K ( 
.+  ,  F ) `
 M )  .+  ( (  seq ( M  +  1 ) (  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
84 simpl 108 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  ph )
85 eqid 2115 . . . . . . . . . . . 12  |-  ( ZZ>= `  K )  =  (
ZZ>= `  K )
8685, 40, 33, 34seqf 10174 . . . . . . . . . . 11  |-  ( ph  ->  seq K (  .+  ,  F ) : (
ZZ>= `  K ) --> S )
8786, 32ffvelrnd 5522 . . . . . . . . . 10  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 M )  e.  S )
8887adantr 272 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (  seq K (  .+  ,  F ) `  M
)  e.  S )
89 eqid 2115 . . . . . . . . . . 11  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
9037adantr 272 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  ( M  +  1 )  e.  ZZ )
9189, 90, 81, 79seqf 10174 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  seq ( M  +  1
) (  .+  ,  F ) : (
ZZ>= `  ( M  + 
1 ) ) --> S )
9291, 72ffvelrnd 5522 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (  seq ( M  +  1 ) (  .+  ,  F ) `  n
)  e.  S )
93 fveq2 5387 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
9493eleq1d 2184 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( n  +  1 ) )  e.  S
) )
9533ralrimiva 2480 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  (
ZZ>= `  K ) ( F `  x )  e.  S )
9695adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  A. x  e.  ( ZZ>= `  K )
( F `  x
)  e.  S )
97 fzssuz 9785 . . . . . . . . . . . 12  |-  ( ( M  +  1 ) ... N )  C_  ( ZZ>= `  ( M  +  1 ) )
98 uzss 9295 . . . . . . . . . . . . 13  |-  ( ( M  +  1 )  e.  ( ZZ>= `  K
)  ->  ( ZZ>= `  ( M  +  1
) )  C_  ( ZZ>=
`  K ) )
9974, 98syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  ( ZZ>= `  K
) )
10097, 99sstrid 3076 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( ZZ>= `  K ) )
101 simpr 109 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= `  ( M  +  1
) )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) )  -> 
( n  +  1 )  e.  ( ( M  +  1 ) ... N ) )
102 ssel2 3060 . . . . . . . . . . 11  |-  ( ( ( ( M  + 
1 ) ... N
)  C_  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( ( M  +  1 ) ... N ) )  -> 
( n  +  1 )  e.  ( ZZ>= `  K ) )
103100, 101, 102syl2an 285 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
n  +  1 )  e.  ( ZZ>= `  K
) )
10494, 96, 103rspcdva 2766 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  ( F `  ( n  +  1 ) )  e.  S )
105 seq3split.2 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
106105caovassg 5895 . . . . . . . . 9  |-  ( (
ph  /\  ( (  seq K (  .+  ,  F ) `  M
)  e.  S  /\  (  seq ( M  + 
1 ) (  .+  ,  F ) `  n
)  e.  S  /\  ( F `  ( n  +  1 ) )  e.  S ) )  ->  ( ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  ( (  seq ( M  +  1 ) (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) ) )
10784, 88, 92, 104, 106syl13anc 1201 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  n )
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  ( (  seq ( M  +  1 ) (  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
10883, 107eqtr4d 2151 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
(  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) )  =  ( ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  n )
)  .+  ( F `  ( n  +  1 ) ) ) )
10980, 108eqeq12d 2130 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
(  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) )  <->  ( (  seq K (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  .+  ( F `  ( n  +  1 ) ) ) ) )
11071, 109syl5ibr 155 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  /\  ( n  + 
1 )  e.  ( ( M  +  1 ) ... N ) ) )  ->  (
(  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) )  ->  (  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) )
11170, 110animpimp2impd 531 . . . 4  |-  ( n  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( ( ph  ->  ( n  e.  ( ( M  + 
1 ) ... N
)  ->  (  seq K (  .+  ,  F ) `  n
)  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  n
) ) ) )  ->  ( ph  ->  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  -> 
(  seq K (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  (
n  +  1 ) ) ) ) ) ) )
11210, 17, 24, 31, 66, 111uzind4 9332 . . 3  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( ph  ->  ( N  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  N )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) ) )
1131, 112mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( ( M  +  1 ) ... N )  ->  (  seq K
(  .+  ,  F
) `  N )  =  ( (  seq K (  .+  ,  F ) `  M
)  .+  (  seq ( M  +  1
) (  .+  ,  F ) `  N
) ) ) )
1143, 113mpd 13 1  |-  ( ph  ->  (  seq K ( 
.+  ,  F ) `
 N )  =  ( (  seq K
(  .+  ,  F
) `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945    = wceq 1314    e. wcel 1463   A.wral 2391    C_ wss 3039   class class class wbr 3897   ` cfv 5091  (class class class)co 5740   RRcr 7583   1c1 7585    + caddc 7587    <_ cle 7765   ZZcz 9005   ZZ>=cuz 9275   ...cfz 9730    seqcseq 10158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8678  df-n0 8929  df-z 9006  df-uz 9276  df-fz 9731  df-seqfrec 10159
This theorem is referenced by:  seq3-1p  10193  seq3f1olemqsumk  10212  seq3f1olemqsum  10213  bcval5  10449  clim2ser  11046  clim2ser2  11047  isumsplit  11200  cvgratnnlemseq  11235
  Copyright terms: Public domain W3C validator