Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3split | Unicode version |
Description: Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.) |
Ref | Expression |
---|---|
seq3split.1 | |
seq3split.2 | |
seq3split.3 | |
seq3split.4 | |
seq3split.5 |
Ref | Expression |
---|---|
seq3split |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seq3split.3 | . . 3 | |
2 | eluzfz2 9967 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | eleq1 2229 | . . . . . 6 | |
5 | fveq2 5486 | . . . . . . 7 | |
6 | fveq2 5486 | . . . . . . . 8 | |
7 | 6 | oveq2d 5858 | . . . . . . 7 |
8 | 5, 7 | eqeq12d 2180 | . . . . . 6 |
9 | 4, 8 | imbi12d 233 | . . . . 5 |
10 | 9 | imbi2d 229 | . . . 4 |
11 | eleq1 2229 | . . . . . 6 | |
12 | fveq2 5486 | . . . . . . 7 | |
13 | fveq2 5486 | . . . . . . . 8 | |
14 | 13 | oveq2d 5858 | . . . . . . 7 |
15 | 12, 14 | eqeq12d 2180 | . . . . . 6 |
16 | 11, 15 | imbi12d 233 | . . . . 5 |
17 | 16 | imbi2d 229 | . . . 4 |
18 | eleq1 2229 | . . . . . 6 | |
19 | fveq2 5486 | . . . . . . 7 | |
20 | fveq2 5486 | . . . . . . . 8 | |
21 | 20 | oveq2d 5858 | . . . . . . 7 |
22 | 19, 21 | eqeq12d 2180 | . . . . . 6 |
23 | 18, 22 | imbi12d 233 | . . . . 5 |
24 | 23 | imbi2d 229 | . . . 4 |
25 | eleq1 2229 | . . . . . 6 | |
26 | fveq2 5486 | . . . . . . 7 | |
27 | fveq2 5486 | . . . . . . . 8 | |
28 | 27 | oveq2d 5858 | . . . . . . 7 |
29 | 26, 28 | eqeq12d 2180 | . . . . . 6 |
30 | 25, 29 | imbi12d 233 | . . . . 5 |
31 | 30 | imbi2d 229 | . . . 4 |
32 | seq3split.4 | . . . . . . 7 | |
33 | seq3split.5 | . . . . . . 7 | |
34 | seq3split.1 | . . . . . . 7 | |
35 | 32, 33, 34 | seq3p1 10397 | . . . . . 6 |
36 | eluzel2 9471 | . . . . . . . . 9 | |
37 | 1, 36 | syl 14 | . . . . . . . 8 |
38 | simpl 108 | . . . . . . . . 9 | |
39 | eluzel2 9471 | . . . . . . . . . . . 12 | |
40 | 32, 39 | syl 14 | . . . . . . . . . . 11 |
41 | 40 | adantr 274 | . . . . . . . . . 10 |
42 | eluzelz 9475 | . . . . . . . . . . 11 | |
43 | 42 | adantl 275 | . . . . . . . . . 10 |
44 | 41 | zred 9313 | . . . . . . . . . . 11 |
45 | eluzelz 9475 | . . . . . . . . . . . . . 14 | |
46 | 32, 45 | syl 14 | . . . . . . . . . . . . 13 |
47 | 46 | zred 9313 | . . . . . . . . . . . 12 |
48 | 47 | adantr 274 | . . . . . . . . . . 11 |
49 | 43 | zred 9313 | . . . . . . . . . . 11 |
50 | eluzle 9478 | . . . . . . . . . . . . 13 | |
51 | 32, 50 | syl 14 | . . . . . . . . . . . 12 |
52 | 51 | adantr 274 | . . . . . . . . . . 11 |
53 | peano2re 8034 | . . . . . . . . . . . . 13 | |
54 | 48, 53 | syl 14 | . . . . . . . . . . . 12 |
55 | 48 | lep1d 8826 | . . . . . . . . . . . 12 |
56 | eluzle 9478 | . . . . . . . . . . . . 13 | |
57 | 56 | adantl 275 | . . . . . . . . . . . 12 |
58 | 48, 54, 49, 55, 57 | letrd 8022 | . . . . . . . . . . 11 |
59 | 44, 48, 49, 52, 58 | letrd 8022 | . . . . . . . . . 10 |
60 | eluz2 9472 | . . . . . . . . . 10 | |
61 | 41, 43, 59, 60 | syl3anbrc 1171 | . . . . . . . . 9 |
62 | 38, 61, 33 | syl2anc 409 | . . . . . . . 8 |
63 | 37, 62, 34 | seq3-1 10395 | . . . . . . 7 |
64 | 63 | oveq2d 5858 | . . . . . 6 |
65 | 35, 64 | eqtr4d 2201 | . . . . 5 |
66 | 65 | a1i13 24 | . . . 4 |
67 | peano2fzr 9972 | . . . . . . . 8 | |
68 | 67 | adantl 275 | . . . . . . 7 |
69 | 68 | expr 373 | . . . . . 6 |
70 | 69 | imim1d 75 | . . . . 5 |
71 | oveq1 5849 | . . . . . 6 | |
72 | simprl 521 | . . . . . . . . 9 | |
73 | peano2uz 9521 | . . . . . . . . . . 11 | |
74 | 32, 73 | syl 14 | . . . . . . . . . 10 |
75 | 74 | adantr 274 | . . . . . . . . 9 |
76 | uztrn 9482 | . . . . . . . . 9 | |
77 | 72, 75, 76 | syl2anc 409 | . . . . . . . 8 |
78 | 33 | adantlr 469 | . . . . . . . 8 |
79 | 34 | adantlr 469 | . . . . . . . 8 |
80 | 77, 78, 79 | seq3p1 10397 | . . . . . . 7 |
81 | 62 | adantlr 469 | . . . . . . . . . 10 |
82 | 72, 81, 79 | seq3p1 10397 | . . . . . . . . 9 |
83 | 82 | oveq2d 5858 | . . . . . . . 8 |
84 | simpl 108 | . . . . . . . . 9 | |
85 | eqid 2165 | . . . . . . . . . . . 12 | |
86 | 85, 40, 33, 34 | seqf 10396 | . . . . . . . . . . 11 |
87 | 86, 32 | ffvelrnd 5621 | . . . . . . . . . 10 |
88 | 87 | adantr 274 | . . . . . . . . 9 |
89 | eqid 2165 | . . . . . . . . . . 11 | |
90 | 37 | adantr 274 | . . . . . . . . . . 11 |
91 | 89, 90, 81, 79 | seqf 10396 | . . . . . . . . . 10 |
92 | 91, 72 | ffvelrnd 5621 | . . . . . . . . 9 |
93 | fveq2 5486 | . . . . . . . . . . 11 | |
94 | 93 | eleq1d 2235 | . . . . . . . . . 10 |
95 | 33 | ralrimiva 2539 | . . . . . . . . . . 11 |
96 | 95 | adantr 274 | . . . . . . . . . 10 |
97 | fzssuz 10000 | . . . . . . . . . . . 12 | |
98 | uzss 9486 | . . . . . . . . . . . . 13 | |
99 | 74, 98 | syl 14 | . . . . . . . . . . . 12 |
100 | 97, 99 | sstrid 3153 | . . . . . . . . . . 11 |
101 | simpr 109 | . . . . . . . . . . 11 | |
102 | ssel2 3137 | . . . . . . . . . . 11 | |
103 | 100, 101, 102 | syl2an 287 | . . . . . . . . . 10 |
104 | 94, 96, 103 | rspcdva 2835 | . . . . . . . . 9 |
105 | seq3split.2 | . . . . . . . . . 10 | |
106 | 105 | caovassg 6000 | . . . . . . . . 9 |
107 | 84, 88, 92, 104, 106 | syl13anc 1230 | . . . . . . . 8 |
108 | 83, 107 | eqtr4d 2201 | . . . . . . 7 |
109 | 80, 108 | eqeq12d 2180 | . . . . . 6 |
110 | 71, 109 | syl5ibr 155 | . . . . 5 |
111 | 70, 110 | animpimp2impd 549 | . . . 4 |
112 | 10, 17, 24, 31, 66, 111 | uzind4 9526 | . . 3 |
113 | 1, 112 | mpcom 36 | . 2 |
114 | 3, 113 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wral 2444 wss 3116 class class class wbr 3982 cfv 5188 (class class class)co 5842 cr 7752 c1 7754 caddc 7756 cle 7934 cz 9191 cuz 9466 cfz 9944 cseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-seqfrec 10381 |
This theorem is referenced by: seq3-1p 10415 seq3f1olemqsumk 10434 seq3f1olemqsum 10435 bcval5 10676 clim2ser 11278 clim2ser2 11279 isumsplit 11432 cvgratnnlemseq 11467 clim2divap 11481 |
Copyright terms: Public domain | W3C validator |