| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3split | Unicode version | ||
| Description: Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.) |
| Ref | Expression |
|---|---|
| seq3split.1 |
|
| seq3split.2 |
|
| seq3split.3 |
|
| seq3split.4 |
|
| seq3split.5 |
|
| Ref | Expression |
|---|---|
| seq3split |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seq3split.3 |
. . 3
| |
| 2 | eluzfz2 10216 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | eleq1 2292 |
. . . . . 6
| |
| 5 | fveq2 5623 |
. . . . . . 7
| |
| 6 | fveq2 5623 |
. . . . . . . 8
| |
| 7 | 6 | oveq2d 6010 |
. . . . . . 7
|
| 8 | 5, 7 | eqeq12d 2244 |
. . . . . 6
|
| 9 | 4, 8 | imbi12d 234 |
. . . . 5
|
| 10 | 9 | imbi2d 230 |
. . . 4
|
| 11 | eleq1 2292 |
. . . . . 6
| |
| 12 | fveq2 5623 |
. . . . . . 7
| |
| 13 | fveq2 5623 |
. . . . . . . 8
| |
| 14 | 13 | oveq2d 6010 |
. . . . . . 7
|
| 15 | 12, 14 | eqeq12d 2244 |
. . . . . 6
|
| 16 | 11, 15 | imbi12d 234 |
. . . . 5
|
| 17 | 16 | imbi2d 230 |
. . . 4
|
| 18 | eleq1 2292 |
. . . . . 6
| |
| 19 | fveq2 5623 |
. . . . . . 7
| |
| 20 | fveq2 5623 |
. . . . . . . 8
| |
| 21 | 20 | oveq2d 6010 |
. . . . . . 7
|
| 22 | 19, 21 | eqeq12d 2244 |
. . . . . 6
|
| 23 | 18, 22 | imbi12d 234 |
. . . . 5
|
| 24 | 23 | imbi2d 230 |
. . . 4
|
| 25 | eleq1 2292 |
. . . . . 6
| |
| 26 | fveq2 5623 |
. . . . . . 7
| |
| 27 | fveq2 5623 |
. . . . . . . 8
| |
| 28 | 27 | oveq2d 6010 |
. . . . . . 7
|
| 29 | 26, 28 | eqeq12d 2244 |
. . . . . 6
|
| 30 | 25, 29 | imbi12d 234 |
. . . . 5
|
| 31 | 30 | imbi2d 230 |
. . . 4
|
| 32 | seq3split.4 |
. . . . . . 7
| |
| 33 | seq3split.5 |
. . . . . . 7
| |
| 34 | seq3split.1 |
. . . . . . 7
| |
| 35 | 32, 33, 34 | seq3p1 10674 |
. . . . . 6
|
| 36 | eluzel2 9715 |
. . . . . . . . 9
| |
| 37 | 1, 36 | syl 14 |
. . . . . . . 8
|
| 38 | simpl 109 |
. . . . . . . . 9
| |
| 39 | eluzel2 9715 |
. . . . . . . . . . . 12
| |
| 40 | 32, 39 | syl 14 |
. . . . . . . . . . 11
|
| 41 | 40 | adantr 276 |
. . . . . . . . . 10
|
| 42 | eluzelz 9719 |
. . . . . . . . . . 11
| |
| 43 | 42 | adantl 277 |
. . . . . . . . . 10
|
| 44 | 41 | zred 9557 |
. . . . . . . . . . 11
|
| 45 | eluzelz 9719 |
. . . . . . . . . . . . . 14
| |
| 46 | 32, 45 | syl 14 |
. . . . . . . . . . . . 13
|
| 47 | 46 | zred 9557 |
. . . . . . . . . . . 12
|
| 48 | 47 | adantr 276 |
. . . . . . . . . . 11
|
| 49 | 43 | zred 9557 |
. . . . . . . . . . 11
|
| 50 | eluzle 9722 |
. . . . . . . . . . . . 13
| |
| 51 | 32, 50 | syl 14 |
. . . . . . . . . . . 12
|
| 52 | 51 | adantr 276 |
. . . . . . . . . . 11
|
| 53 | peano2re 8270 |
. . . . . . . . . . . . 13
| |
| 54 | 48, 53 | syl 14 |
. . . . . . . . . . . 12
|
| 55 | 48 | lep1d 9066 |
. . . . . . . . . . . 12
|
| 56 | eluzle 9722 |
. . . . . . . . . . . . 13
| |
| 57 | 56 | adantl 277 |
. . . . . . . . . . . 12
|
| 58 | 48, 54, 49, 55, 57 | letrd 8258 |
. . . . . . . . . . 11
|
| 59 | 44, 48, 49, 52, 58 | letrd 8258 |
. . . . . . . . . 10
|
| 60 | eluz2 9716 |
. . . . . . . . . 10
| |
| 61 | 41, 43, 59, 60 | syl3anbrc 1205 |
. . . . . . . . 9
|
| 62 | 38, 61, 33 | syl2anc 411 |
. . . . . . . 8
|
| 63 | 37, 62, 34 | seq3-1 10671 |
. . . . . . 7
|
| 64 | 63 | oveq2d 6010 |
. . . . . 6
|
| 65 | 35, 64 | eqtr4d 2265 |
. . . . 5
|
| 66 | 65 | a1i13 24 |
. . . 4
|
| 67 | peano2fzr 10221 |
. . . . . . . 8
| |
| 68 | 67 | adantl 277 |
. . . . . . 7
|
| 69 | 68 | expr 375 |
. . . . . 6
|
| 70 | 69 | imim1d 75 |
. . . . 5
|
| 71 | oveq1 6001 |
. . . . . 6
| |
| 72 | simprl 529 |
. . . . . . . . 9
| |
| 73 | peano2uz 9766 |
. . . . . . . . . . 11
| |
| 74 | 32, 73 | syl 14 |
. . . . . . . . . 10
|
| 75 | 74 | adantr 276 |
. . . . . . . . 9
|
| 76 | uztrn 9727 |
. . . . . . . . 9
| |
| 77 | 72, 75, 76 | syl2anc 411 |
. . . . . . . 8
|
| 78 | 33 | adantlr 477 |
. . . . . . . 8
|
| 79 | 34 | adantlr 477 |
. . . . . . . 8
|
| 80 | 77, 78, 79 | seq3p1 10674 |
. . . . . . 7
|
| 81 | 62 | adantlr 477 |
. . . . . . . . . 10
|
| 82 | 72, 81, 79 | seq3p1 10674 |
. . . . . . . . 9
|
| 83 | 82 | oveq2d 6010 |
. . . . . . . 8
|
| 84 | simpl 109 |
. . . . . . . . 9
| |
| 85 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 86 | 85, 40, 33, 34 | seqf 10673 |
. . . . . . . . . . 11
|
| 87 | 86, 32 | ffvelcdmd 5764 |
. . . . . . . . . 10
|
| 88 | 87 | adantr 276 |
. . . . . . . . 9
|
| 89 | eqid 2229 |
. . . . . . . . . . 11
| |
| 90 | 37 | adantr 276 |
. . . . . . . . . . 11
|
| 91 | 89, 90, 81, 79 | seqf 10673 |
. . . . . . . . . 10
|
| 92 | 91, 72 | ffvelcdmd 5764 |
. . . . . . . . 9
|
| 93 | fveq2 5623 |
. . . . . . . . . . 11
| |
| 94 | 93 | eleq1d 2298 |
. . . . . . . . . 10
|
| 95 | 33 | ralrimiva 2603 |
. . . . . . . . . . 11
|
| 96 | 95 | adantr 276 |
. . . . . . . . . 10
|
| 97 | fzssuz 10249 |
. . . . . . . . . . . 12
| |
| 98 | uzss 9731 |
. . . . . . . . . . . . 13
| |
| 99 | 74, 98 | syl 14 |
. . . . . . . . . . . 12
|
| 100 | 97, 99 | sstrid 3235 |
. . . . . . . . . . 11
|
| 101 | simpr 110 |
. . . . . . . . . . 11
| |
| 102 | ssel2 3219 |
. . . . . . . . . . 11
| |
| 103 | 100, 101, 102 | syl2an 289 |
. . . . . . . . . 10
|
| 104 | 94, 96, 103 | rspcdva 2912 |
. . . . . . . . 9
|
| 105 | seq3split.2 |
. . . . . . . . . 10
| |
| 106 | 105 | caovassg 6155 |
. . . . . . . . 9
|
| 107 | 84, 88, 92, 104, 106 | syl13anc 1273 |
. . . . . . . 8
|
| 108 | 83, 107 | eqtr4d 2265 |
. . . . . . 7
|
| 109 | 80, 108 | eqeq12d 2244 |
. . . . . 6
|
| 110 | 71, 109 | imbitrrid 156 |
. . . . 5
|
| 111 | 70, 110 | animpimp2impd 559 |
. . . 4
|
| 112 | 10, 17, 24, 31, 66, 111 | uzind4 9771 |
. . 3
|
| 113 | 1, 112 | mpcom 36 |
. 2
|
| 114 | 3, 113 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-fz 10193 df-seqfrec 10657 |
| This theorem is referenced by: seq3-1p 10699 seq3f1olemqsumk 10721 seq3f1olemqsum 10722 bcval5 10972 clim2ser 11834 clim2ser2 11835 isumsplit 11988 cvgratnnlemseq 12023 clim2divap 12037 mulgnndir 13674 |
| Copyright terms: Public domain | W3C validator |