| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > seq3split | Unicode version | ||
| Description: Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| seq3split.1 | 
 | 
| seq3split.2 | 
 | 
| seq3split.3 | 
 | 
| seq3split.4 | 
 | 
| seq3split.5 | 
 | 
| Ref | Expression | 
|---|---|
| seq3split | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | seq3split.3 | 
. . 3
 | |
| 2 | eluzfz2 10107 | 
. . 3
 | |
| 3 | 1, 2 | syl 14 | 
. 2
 | 
| 4 | eleq1 2259 | 
. . . . . 6
 | |
| 5 | fveq2 5558 | 
. . . . . . 7
 | |
| 6 | fveq2 5558 | 
. . . . . . . 8
 | |
| 7 | 6 | oveq2d 5938 | 
. . . . . . 7
 | 
| 8 | 5, 7 | eqeq12d 2211 | 
. . . . . 6
 | 
| 9 | 4, 8 | imbi12d 234 | 
. . . . 5
 | 
| 10 | 9 | imbi2d 230 | 
. . . 4
 | 
| 11 | eleq1 2259 | 
. . . . . 6
 | |
| 12 | fveq2 5558 | 
. . . . . . 7
 | |
| 13 | fveq2 5558 | 
. . . . . . . 8
 | |
| 14 | 13 | oveq2d 5938 | 
. . . . . . 7
 | 
| 15 | 12, 14 | eqeq12d 2211 | 
. . . . . 6
 | 
| 16 | 11, 15 | imbi12d 234 | 
. . . . 5
 | 
| 17 | 16 | imbi2d 230 | 
. . . 4
 | 
| 18 | eleq1 2259 | 
. . . . . 6
 | |
| 19 | fveq2 5558 | 
. . . . . . 7
 | |
| 20 | fveq2 5558 | 
. . . . . . . 8
 | |
| 21 | 20 | oveq2d 5938 | 
. . . . . . 7
 | 
| 22 | 19, 21 | eqeq12d 2211 | 
. . . . . 6
 | 
| 23 | 18, 22 | imbi12d 234 | 
. . . . 5
 | 
| 24 | 23 | imbi2d 230 | 
. . . 4
 | 
| 25 | eleq1 2259 | 
. . . . . 6
 | |
| 26 | fveq2 5558 | 
. . . . . . 7
 | |
| 27 | fveq2 5558 | 
. . . . . . . 8
 | |
| 28 | 27 | oveq2d 5938 | 
. . . . . . 7
 | 
| 29 | 26, 28 | eqeq12d 2211 | 
. . . . . 6
 | 
| 30 | 25, 29 | imbi12d 234 | 
. . . . 5
 | 
| 31 | 30 | imbi2d 230 | 
. . . 4
 | 
| 32 | seq3split.4 | 
. . . . . . 7
 | |
| 33 | seq3split.5 | 
. . . . . . 7
 | |
| 34 | seq3split.1 | 
. . . . . . 7
 | |
| 35 | 32, 33, 34 | seq3p1 10557 | 
. . . . . 6
 | 
| 36 | eluzel2 9606 | 
. . . . . . . . 9
 | |
| 37 | 1, 36 | syl 14 | 
. . . . . . . 8
 | 
| 38 | simpl 109 | 
. . . . . . . . 9
 | |
| 39 | eluzel2 9606 | 
. . . . . . . . . . . 12
 | |
| 40 | 32, 39 | syl 14 | 
. . . . . . . . . . 11
 | 
| 41 | 40 | adantr 276 | 
. . . . . . . . . 10
 | 
| 42 | eluzelz 9610 | 
. . . . . . . . . . 11
 | |
| 43 | 42 | adantl 277 | 
. . . . . . . . . 10
 | 
| 44 | 41 | zred 9448 | 
. . . . . . . . . . 11
 | 
| 45 | eluzelz 9610 | 
. . . . . . . . . . . . . 14
 | |
| 46 | 32, 45 | syl 14 | 
. . . . . . . . . . . . 13
 | 
| 47 | 46 | zred 9448 | 
. . . . . . . . . . . 12
 | 
| 48 | 47 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 49 | 43 | zred 9448 | 
. . . . . . . . . . 11
 | 
| 50 | eluzle 9613 | 
. . . . . . . . . . . . 13
 | |
| 51 | 32, 50 | syl 14 | 
. . . . . . . . . . . 12
 | 
| 52 | 51 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 53 | peano2re 8162 | 
. . . . . . . . . . . . 13
 | |
| 54 | 48, 53 | syl 14 | 
. . . . . . . . . . . 12
 | 
| 55 | 48 | lep1d 8958 | 
. . . . . . . . . . . 12
 | 
| 56 | eluzle 9613 | 
. . . . . . . . . . . . 13
 | |
| 57 | 56 | adantl 277 | 
. . . . . . . . . . . 12
 | 
| 58 | 48, 54, 49, 55, 57 | letrd 8150 | 
. . . . . . . . . . 11
 | 
| 59 | 44, 48, 49, 52, 58 | letrd 8150 | 
. . . . . . . . . 10
 | 
| 60 | eluz2 9607 | 
. . . . . . . . . 10
 | |
| 61 | 41, 43, 59, 60 | syl3anbrc 1183 | 
. . . . . . . . 9
 | 
| 62 | 38, 61, 33 | syl2anc 411 | 
. . . . . . . 8
 | 
| 63 | 37, 62, 34 | seq3-1 10554 | 
. . . . . . 7
 | 
| 64 | 63 | oveq2d 5938 | 
. . . . . 6
 | 
| 65 | 35, 64 | eqtr4d 2232 | 
. . . . 5
 | 
| 66 | 65 | a1i13 24 | 
. . . 4
 | 
| 67 | peano2fzr 10112 | 
. . . . . . . 8
 | |
| 68 | 67 | adantl 277 | 
. . . . . . 7
 | 
| 69 | 68 | expr 375 | 
. . . . . 6
 | 
| 70 | 69 | imim1d 75 | 
. . . . 5
 | 
| 71 | oveq1 5929 | 
. . . . . 6
 | |
| 72 | simprl 529 | 
. . . . . . . . 9
 | |
| 73 | peano2uz 9657 | 
. . . . . . . . . . 11
 | |
| 74 | 32, 73 | syl 14 | 
. . . . . . . . . 10
 | 
| 75 | 74 | adantr 276 | 
. . . . . . . . 9
 | 
| 76 | uztrn 9618 | 
. . . . . . . . 9
 | |
| 77 | 72, 75, 76 | syl2anc 411 | 
. . . . . . . 8
 | 
| 78 | 33 | adantlr 477 | 
. . . . . . . 8
 | 
| 79 | 34 | adantlr 477 | 
. . . . . . . 8
 | 
| 80 | 77, 78, 79 | seq3p1 10557 | 
. . . . . . 7
 | 
| 81 | 62 | adantlr 477 | 
. . . . . . . . . 10
 | 
| 82 | 72, 81, 79 | seq3p1 10557 | 
. . . . . . . . 9
 | 
| 83 | 82 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 84 | simpl 109 | 
. . . . . . . . 9
 | |
| 85 | eqid 2196 | 
. . . . . . . . . . . 12
 | |
| 86 | 85, 40, 33, 34 | seqf 10556 | 
. . . . . . . . . . 11
 | 
| 87 | 86, 32 | ffvelcdmd 5698 | 
. . . . . . . . . 10
 | 
| 88 | 87 | adantr 276 | 
. . . . . . . . 9
 | 
| 89 | eqid 2196 | 
. . . . . . . . . . 11
 | |
| 90 | 37 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 91 | 89, 90, 81, 79 | seqf 10556 | 
. . . . . . . . . 10
 | 
| 92 | 91, 72 | ffvelcdmd 5698 | 
. . . . . . . . 9
 | 
| 93 | fveq2 5558 | 
. . . . . . . . . . 11
 | |
| 94 | 93 | eleq1d 2265 | 
. . . . . . . . . 10
 | 
| 95 | 33 | ralrimiva 2570 | 
. . . . . . . . . . 11
 | 
| 96 | 95 | adantr 276 | 
. . . . . . . . . 10
 | 
| 97 | fzssuz 10140 | 
. . . . . . . . . . . 12
 | |
| 98 | uzss 9622 | 
. . . . . . . . . . . . 13
 | |
| 99 | 74, 98 | syl 14 | 
. . . . . . . . . . . 12
 | 
| 100 | 97, 99 | sstrid 3194 | 
. . . . . . . . . . 11
 | 
| 101 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 102 | ssel2 3178 | 
. . . . . . . . . . 11
 | |
| 103 | 100, 101, 102 | syl2an 289 | 
. . . . . . . . . 10
 | 
| 104 | 94, 96, 103 | rspcdva 2873 | 
. . . . . . . . 9
 | 
| 105 | seq3split.2 | 
. . . . . . . . . 10
 | |
| 106 | 105 | caovassg 6082 | 
. . . . . . . . 9
 | 
| 107 | 84, 88, 92, 104, 106 | syl13anc 1251 | 
. . . . . . . 8
 | 
| 108 | 83, 107 | eqtr4d 2232 | 
. . . . . . 7
 | 
| 109 | 80, 108 | eqeq12d 2211 | 
. . . . . 6
 | 
| 110 | 71, 109 | imbitrrid 156 | 
. . . . 5
 | 
| 111 | 70, 110 | animpimp2impd 559 | 
. . . 4
 | 
| 112 | 10, 17, 24, 31, 66, 111 | uzind4 9662 | 
. . 3
 | 
| 113 | 1, 112 | mpcom 36 | 
. 2
 | 
| 114 | 3, 113 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 | 
| This theorem is referenced by: seq3-1p 10582 seq3f1olemqsumk 10604 seq3f1olemqsum 10605 bcval5 10855 clim2ser 11502 clim2ser2 11503 isumsplit 11656 cvgratnnlemseq 11691 clim2divap 11705 mulgnndir 13281 | 
| Copyright terms: Public domain | W3C validator |