| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3fveq2 | Unicode version | ||
| Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.) |
| Ref | Expression |
|---|---|
| seq3fveq2.1 |
|
| seq3fveq2.2 |
|
| seq3fveq2.f |
|
| seq3fveq2.g |
|
| seq3fveq2.pl |
|
| seq3fveq2.3 |
|
| seq3fveq2.4 |
|
| Ref | Expression |
|---|---|
| seq3fveq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seq3fveq2.3 |
. . 3
| |
| 2 | eluzfz2 10109 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | eleq1 2259 |
. . . . . 6
| |
| 5 | fveq2 5559 |
. . . . . . 7
| |
| 6 | fveq2 5559 |
. . . . . . 7
| |
| 7 | 5, 6 | eqeq12d 2211 |
. . . . . 6
|
| 8 | 4, 7 | imbi12d 234 |
. . . . 5
|
| 9 | 8 | imbi2d 230 |
. . . 4
|
| 10 | eleq1 2259 |
. . . . . 6
| |
| 11 | fveq2 5559 |
. . . . . . 7
| |
| 12 | fveq2 5559 |
. . . . . . 7
| |
| 13 | 11, 12 | eqeq12d 2211 |
. . . . . 6
|
| 14 | 10, 13 | imbi12d 234 |
. . . . 5
|
| 15 | 14 | imbi2d 230 |
. . . 4
|
| 16 | eleq1 2259 |
. . . . . 6
| |
| 17 | fveq2 5559 |
. . . . . . 7
| |
| 18 | fveq2 5559 |
. . . . . . 7
| |
| 19 | 17, 18 | eqeq12d 2211 |
. . . . . 6
|
| 20 | 16, 19 | imbi12d 234 |
. . . . 5
|
| 21 | 20 | imbi2d 230 |
. . . 4
|
| 22 | eleq1 2259 |
. . . . . 6
| |
| 23 | fveq2 5559 |
. . . . . . 7
| |
| 24 | fveq2 5559 |
. . . . . . 7
| |
| 25 | 23, 24 | eqeq12d 2211 |
. . . . . 6
|
| 26 | 22, 25 | imbi12d 234 |
. . . . 5
|
| 27 | 26 | imbi2d 230 |
. . . 4
|
| 28 | seq3fveq2.2 |
. . . . . 6
| |
| 29 | seq3fveq2.1 |
. . . . . . . 8
| |
| 30 | eluzelz 9612 |
. . . . . . . 8
| |
| 31 | 29, 30 | syl 14 |
. . . . . . 7
|
| 32 | seq3fveq2.g |
. . . . . . 7
| |
| 33 | seq3fveq2.pl |
. . . . . . 7
| |
| 34 | 31, 32, 33 | seq3-1 10556 |
. . . . . 6
|
| 35 | 28, 34 | eqtr4d 2232 |
. . . . 5
|
| 36 | 35 | a1i13 24 |
. . . 4
|
| 37 | peano2fzr 10114 |
. . . . . . . 8
| |
| 38 | 37 | adantl 277 |
. . . . . . 7
|
| 39 | 38 | expr 375 |
. . . . . 6
|
| 40 | 39 | imim1d 75 |
. . . . 5
|
| 41 | oveq1 5930 |
. . . . . 6
| |
| 42 | simprl 529 |
. . . . . . . . 9
| |
| 43 | 29 | adantr 276 |
. . . . . . . . 9
|
| 44 | uztrn 9620 |
. . . . . . . . 9
| |
| 45 | 42, 43, 44 | syl2anc 411 |
. . . . . . . 8
|
| 46 | seq3fveq2.f |
. . . . . . . . 9
| |
| 47 | 46 | adantlr 477 |
. . . . . . . 8
|
| 48 | 33 | adantlr 477 |
. . . . . . . 8
|
| 49 | 45, 47, 48 | seq3p1 10559 |
. . . . . . 7
|
| 50 | 32 | adantlr 477 |
. . . . . . . . 9
|
| 51 | 42, 50, 48 | seq3p1 10559 |
. . . . . . . 8
|
| 52 | fveq2 5559 |
. . . . . . . . . . 11
| |
| 53 | fveq2 5559 |
. . . . . . . . . . 11
| |
| 54 | 52, 53 | eqeq12d 2211 |
. . . . . . . . . 10
|
| 55 | seq3fveq2.4 |
. . . . . . . . . . . 12
| |
| 56 | 55 | ralrimiva 2570 |
. . . . . . . . . . 11
|
| 57 | 56 | adantr 276 |
. . . . . . . . . 10
|
| 58 | eluzp1p1 9629 |
. . . . . . . . . . . 12
| |
| 59 | 58 | ad2antrl 490 |
. . . . . . . . . . 11
|
| 60 | elfzuz3 10099 |
. . . . . . . . . . . 12
| |
| 61 | 60 | ad2antll 491 |
. . . . . . . . . . 11
|
| 62 | elfzuzb 10096 |
. . . . . . . . . . 11
| |
| 63 | 59, 61, 62 | sylanbrc 417 |
. . . . . . . . . 10
|
| 64 | 54, 57, 63 | rspcdva 2873 |
. . . . . . . . 9
|
| 65 | 64 | oveq2d 5939 |
. . . . . . . 8
|
| 66 | 51, 65 | eqtr4d 2232 |
. . . . . . 7
|
| 67 | 49, 66 | eqeq12d 2211 |
. . . . . 6
|
| 68 | 41, 67 | imbitrrid 156 |
. . . . 5
|
| 69 | 40, 68 | animpimp2impd 559 |
. . . 4
|
| 70 | 9, 15, 21, 27, 36, 69 | uzind4 9664 |
. . 3
|
| 71 | 1, 70 | mpcom 36 |
. 2
|
| 72 | 3, 71 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-frec 6450 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-inn 8993 df-n0 9252 df-z 9329 df-uz 9604 df-fz 10086 df-seqfrec 10542 |
| This theorem is referenced by: seq3feq2 10570 seq3fveq 10573 gsumsplit1r 13051 |
| Copyright terms: Public domain | W3C validator |