HomeHome Intuitionistic Logic Explorer
Theorem List (p. 82 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8101-8200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsubadd 8101 Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  =  C  <->  ( B  +  C )  =  A ) )
 
Theoremsubadd2 8102 Relationship between subtraction and addition. (Contributed by Scott Fenton, 5-Jul-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  =  C  <->  ( C  +  B )  =  A ) )
 
Theoremsubsub23 8103 Swap subtrahend and result of subtraction. (Contributed by NM, 14-Dec-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  =  C  <->  ( A  -  C )  =  B ) )
 
Theorempncan 8104 Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B )  =  A )
 
Theorempncan2 8105 Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  A )  =  B )
 
Theorempncan3 8106 Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
 
Theoremnpcan 8107 Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B )  =  A )
 
Theoremaddsubass 8108 Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  C )  =  ( A  +  ( B  -  C ) ) )
 
Theoremaddsub 8109 Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  C )  =  ( ( A  -  C )  +  B ) )
 
Theoremsubadd23 8110 Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  C )  =  ( A  +  ( C  -  B ) ) )
 
Theoremaddsub12 8111 Commutative/associative law for addition and subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  -  C ) )  =  ( B  +  ( A  -  C ) ) )
 
Theorem2addsub 8112 Law for subtraction and addition. (Contributed by NM, 20-Nov-2005.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( ( A  +  B )  +  C )  -  D )  =  ( (
 ( A  +  C )  -  D )  +  B ) )
 
Theoremaddsubeq4 8113 Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  =  ( C  +  D )  <->  ( C  -  A )  =  ( B  -  D ) ) )
 
Theorempncan3oi 8114 Subtraction and addition of equals. Almost but not exactly the same as pncan3i 8175 and pncan 8104, this order happens often when applying "operations to both sides" so create a theorem specifically for it. A deduction version of this is available as pncand 8210. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( ( A  +  B )  -  B )  =  A
 
Theoremmvrraddi 8115 Move RHS right addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  B  e.  CC   &    |-  C  e.  CC   &    |-  A  =  ( B  +  C )   =>    |-  ( A  -  C )  =  B
 
Theoremmvlladdi 8116 Move LHS left addition to RHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  ( A  +  B )  =  C   =>    |-  B  =  ( C  -  A )
 
Theoremsubid 8117 Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  -  A )  =  0 )
 
Theoremsubid1 8118 Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  -  0
 )  =  A )
 
Theoremnpncan 8119 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  ( B  -  C ) )  =  ( A  -  C ) )
 
Theoremnppcan 8120 Cancellation law for subtraction. (Contributed by NM, 1-Sep-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( ( A  -  B )  +  C )  +  B )  =  ( A  +  C ) )
 
Theoremnnpcan 8121 Cancellation law for subtraction: ((a-b)-c)+b = a-c holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( ( A  -  B )  -  C )  +  B )  =  ( A  -  C ) )
 
Theoremnppcan3 8122 Cancellation law for subtraction. (Contributed by Mario Carneiro, 14-Sep-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  ( C  +  B )
 )  =  ( A  +  C ) )
 
Theoremsubcan2 8123 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  C )  =  ( B  -  C )  <->  A  =  B ) )
 
Theoremsubeq0 8124 If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  0  <->  A  =  B ) )
 
Theoremnpncan2 8125 Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  ( B  -  A ) )  =  0
 )
 
Theoremsubsub2 8126 Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) ) )
 
Theoremnncan 8127 Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B ) )  =  B )
 
Theoremsubsub 8128 Law for double subtraction. (Contributed by NM, 13-May-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( ( A  -  B )  +  C ) )
 
Theoremnppcan2 8129 Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  ( B  +  C ) )  +  C )  =  ( A  -  B ) )
 
Theoremsubsub3 8130 Law for double subtraction. (Contributed by NM, 27-Jul-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( ( A  +  C )  -  B ) )
 
Theoremsubsub4 8131 Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  -  C )  =  ( A  -  ( B  +  C ) ) )
 
Theoremsub32 8132 Swap the second and third terms in a double subtraction. (Contributed by NM, 19-Aug-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  -  C )  =  ( ( A  -  C )  -  B ) )
 
Theoremnnncan 8133 Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  ( B  -  C ) )  -  C )  =  ( A  -  B ) )
 
Theoremnnncan1 8134 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  -  ( A  -  C ) )  =  ( C  -  B ) )
 
Theoremnnncan2 8135 Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  C )  -  ( B  -  C ) )  =  ( A  -  B ) )
 
Theoremnpncan3 8136 Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  ( C  -  A ) )  =  ( C  -  B ) )
 
Theorempnpcan 8137 Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  ( A  +  C )
 )  =  ( B  -  C ) )
 
Theorempnpcan2 8138 Cancellation law for mixed addition and subtraction. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  C )  -  ( B  +  C )
 )  =  ( A  -  B ) )
 
Theorempnncan 8139 Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  ( A  -  C ) )  =  ( B  +  C ) )
 
Theoremppncan 8140 Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  ( C  -  B ) )  =  ( A  +  C ) )
 
Theoremaddsub4 8141 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  -  ( C  +  D )
 )  =  ( ( A  -  C )  +  ( B  -  D ) ) )
 
Theoremsubadd4 8142 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 24-Aug-2006.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  -  B )  -  ( C  -  D ) )  =  ( ( A  +  D )  -  ( B  +  C ) ) )
 
Theoremsub4 8143 Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  -  B )  -  ( C  -  D ) )  =  ( ( A  -  C )  -  ( B  -  D ) ) )
 
Theoremneg0 8144 Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.)
 |-  -u 0  =  0
 
Theoremnegid 8145 Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.)
 |-  ( A  e.  CC  ->  ( A  +  -u A )  =  0 )
 
Theoremnegsub 8146 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
 
Theoremsubneg 8147 Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  -u B )  =  ( A  +  B ) )
 
Theoremnegneg 8148 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 12-Jan-2002.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  -> 
 -u -u A  =  A )
 
Theoremneg11 8149 Negative is one-to-one. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  =  -u B  <->  A  =  B ) )
 
Theoremnegcon1 8150 Negative contraposition law. (Contributed by NM, 9-May-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  =  B  <->  -u B  =  A ) )
 
Theoremnegcon2 8151 Negative contraposition law. (Contributed by NM, 14-Nov-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  -u B  <->  B  =  -u A ) )
 
Theoremnegeq0 8152 A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  =  0  <->  -u A  =  0 ) )
 
Theoremsubcan 8153 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  =  ( A  -  C )  <->  B  =  C ) )
 
Theoremnegsubdi 8154 Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  -u ( A  -  B )  =  ( -u A  +  B ) )
 
Theoremnegdi 8155 Distribution of negative over addition. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  -u ( A  +  B )  =  ( -u A  +  -u B ) )
 
Theoremnegdi2 8156 Distribution of negative over addition. (Contributed by NM, 1-Jan-2006.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  -u ( A  +  B )  =  ( -u A  -  B ) )
 
Theoremnegsubdi2 8157 Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  -u ( A  -  B )  =  ( B  -  A ) )
 
Theoremneg2sub 8158 Relationship between subtraction and negative. (Contributed by Paul Chapman, 8-Oct-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  -  -u B )  =  ( B  -  A ) )
 
Theoremrenegcl 8159 Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.)
 |-  ( A  e.  RR  -> 
 -u A  e.  RR )
 
Theoremrenegcli 8160 Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 8159 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  e.  RR   =>    |-  -u A  e.  RR
 
Theoremresubcli 8161 Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  -  B )  e.  RR
 
Theoremresubcl 8162 Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B )  e.  RR )
 
Theoremnegreb 8163 The negative of a real is real. (Contributed by NM, 11-Aug-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( -u A  e.  RR  <->  A  e.  RR ) )
 
Theorempeano2cnm 8164 "Reverse" second Peano postulate analog for complex numbers: A complex number minus 1 is a complex number. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
 |-  ( N  e.  CC  ->  ( N  -  1
 )  e.  CC )
 
Theorempeano2rem 8165 "Reverse" second Peano postulate analog for reals. (Contributed by NM, 6-Feb-2007.)
 |-  ( N  e.  RR  ->  ( N  -  1
 )  e.  RR )
 
Theoremnegcli 8166 Closure law for negative. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   =>    |-  -u A  e.  CC
 
Theoremnegidi 8167 Addition of a number and its negative. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   =>    |-  ( A  +  -u A )  =  0
 
Theoremnegnegi 8168 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 8-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  e.  CC   =>    |-  -u -u A  =  A
 
Theoremsubidi 8169 Subtraction of a number from itself. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   =>    |-  ( A  -  A )  =  0
 
Theoremsubid1i 8170 Identity law for subtraction. (Contributed by NM, 29-May-1999.)
 |-  A  e.  CC   =>    |-  ( A  -  0 )  =  A
 
Theoremnegne0bi 8171 A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( A  =/=  0 
 <->  -u A  =/=  0
 )
 
Theoremnegrebi 8172 The negative of a real is real. (Contributed by NM, 11-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( -u A  e.  RR  <->  A  e.  RR )
 
Theoremnegne0i 8173 The negative of a nonzero number is nonzero. (Contributed by NM, 30-Jul-2004.)
 |-  A  e.  CC   &    |-  A  =/=  0   =>    |-  -u A  =/=  0
 
Theoremsubcli 8174 Closure law for subtraction. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  -  B )  e.  CC
 
Theorempncan3i 8175 Subtraction and addition of equals. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  +  ( B  -  A ) )  =  B
 
Theoremnegsubi 8176 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  +  -u B )  =  ( A  -  B )
 
Theoremsubnegi 8177 Relationship between subtraction and negative. (Contributed by NM, 1-Dec-2005.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  -  -u B )  =  ( A  +  B )
 
Theoremsubeq0i 8178 If the difference between two numbers is zero, they are equal. (Contributed by NM, 8-May-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( ( A  -  B )  =  0  <->  A  =  B )
 
Theoremneg11i 8179 Negative is one-to-one. (Contributed by NM, 1-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( -u A  =  -u B 
 <->  A  =  B )
 
Theoremnegcon1i 8180 Negative contraposition law. (Contributed by NM, 25-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( -u A  =  B  <->  -u B  =  A )
 
Theoremnegcon2i 8181 Negative contraposition law. (Contributed by NM, 25-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  =  -u B 
 <->  B  =  -u A )
 
Theoremnegdii 8182 Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  -u ( A  +  B )  =  ( -u A  +  -u B )
 
Theoremnegsubdii 8183 Distribution of negative over subtraction. (Contributed by NM, 6-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  -u ( A  -  B )  =  ( -u A  +  B )
 
Theoremnegsubdi2i 8184 Distribution of negative over subtraction. (Contributed by NM, 1-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  -u ( A  -  B )  =  ( B  -  A )
 
Theoremsubaddi 8185 Relationship between subtraction and addition. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  =  C  <->  ( B  +  C )  =  A )
 
Theoremsubadd2i 8186 Relationship between subtraction and addition. (Contributed by NM, 15-Dec-2006.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  =  C  <->  ( C  +  B )  =  A )
 
Theoremsubaddrii 8187 Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  ( B  +  C )  =  A   =>    |-  ( A  -  B )  =  C
 
Theoremsubsub23i 8188 Swap subtrahend and result of subtraction. (Contributed by NM, 7-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  =  C  <->  ( A  -  C )  =  B )
 
Theoremaddsubassi 8189 Associative-type law for subtraction and addition. (Contributed by NM, 16-Sep-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  -  C )  =  ( A  +  ( B  -  C ) )
 
Theoremaddsubi 8190 Law for subtraction and addition. (Contributed by NM, 6-Aug-2003.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  -  C )  =  ( ( A  -  C )  +  B )
 
Theoremsubcani 8191 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  =  ( A  -  C )  <->  B  =  C )
 
Theoremsubcan2i 8192 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  C )  =  ( B  -  C )  <->  A  =  B )
 
Theorempnncani 8193 Cancellation law for mixed addition and subtraction. (Contributed by NM, 14-Jan-2006.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  -  ( A  -  C ) )  =  ( B  +  C )
 
Theoremaddsub4i 8194 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 17-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   =>    |-  ( ( A  +  B )  -  ( C  +  D )
 )  =  ( ( A  -  C )  +  ( B  -  D ) )
 
Theorem0reALT 8195 Alternate proof of 0re 7899. (Contributed by NM, 19-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  0  e.  RR
 
Theoremnegcld 8196 Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  -u A  e.  CC )
 
Theoremsubidd 8197 Subtraction of a number from itself. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  -  A )  =  0 )
 
Theoremsubid1d 8198 Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  -  0 )  =  A )
 
Theoremnegidd 8199 Addition of a number and its negative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  +  -u A )  =  0 )
 
Theoremnegnegd 8200 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  -u -u A  =  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13970
  Copyright terms: Public domain < Previous  Next >