HomeHome Intuitionistic Logic Explorer
Theorem List (p. 82 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8101-8200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnncan2d 8101 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  C )  -  ( B  -  C ) )  =  ( A  -  B ) )
 
Theoremnpncan3d 8102 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  +  ( C  -  A ) )  =  ( C  -  B ) )
 
Theorempnpcand 8103 Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  -  ( A  +  C ) )  =  ( B  -  C ) )
 
Theorempnpcan2d 8104 Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  C )  -  ( B  +  C ) )  =  ( A  -  B ) )
 
Theorempnncand 8105 Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  -  ( A  -  C ) )  =  ( B  +  C ) )
 
Theoremppncand 8106 Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  +  ( C  -  B ) )  =  ( A  +  C ) )
 
Theoremsubcand 8107 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  ( A  -  B )  =  ( A  -  C ) )   =>    |-  ( ph  ->  B  =  C )
 
Theoremsubcan2d 8108 Cancellation law for subtraction. (Contributed by Mario Carneiro, 22-Sep-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  ( A  -  C )  =  ( B  -  C ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremsubcanad 8109 Cancellation law for subtraction. Deduction form of subcan 8010. Generalization of subcand 8107. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  =  ( A  -  C )  <->  B  =  C ) )
 
Theoremsubneintrd 8110 Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcand 8107. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B  =/=  C )   =>    |-  ( ph  ->  ( A  -  B )  =/=  ( A  -  C ) )
 
Theoremsubcan2ad 8111 Cancellation law for subtraction. Deduction form of subcan2 7980. Generalization of subcan2d 8108. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  C )  =  ( B  -  C )  <->  A  =  B ) )
 
Theoremsubneintr2d 8112 Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcan2d 8108. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  ( A  -  C )  =/=  ( B  -  C ) )
 
Theoremaddsub4d 8113 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  -  ( C  +  D ) )  =  ( ( A  -  C )  +  ( B  -  D ) ) )
 
Theoremsubadd4d 8114 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  -  ( C  -  D ) )  =  ( ( A  +  D )  -  ( B  +  C )
 ) )
 
Theoremsub4d 8115 Rearrangement of 4 terms in a subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  -  ( C  -  D ) )  =  ( ( A  -  C )  -  ( B  -  D ) ) )
 
Theorem2addsubd 8116 Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( ( A  +  B )  +  C )  -  D )  =  ( ( ( A  +  C )  -  D )  +  B ) )
 
Theoremaddsubeq4d 8117 Relation between sums and differences. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  =  ( C  +  D )  <->  ( C  -  A )  =  ( B  -  D ) ) )
 
Theoremsubeqxfrd 8118 Transfer two terms of a subtraction in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  ( A  -  B )  =  ( C  -  D ) )   =>    |-  ( ph  ->  ( A  -  C )  =  ( B  -  D ) )
 
Theoremmvlraddd 8119 Move LHS right addition to RHS. (Contributed by David A. Wheeler, 15-Oct-2018.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( A  +  B )  =  C )   =>    |-  ( ph  ->  A  =  ( C  -  B ) )
 
Theoremmvlladdd 8120 Move LHS left addition to RHS. (Contributed by David A. Wheeler, 15-Oct-2018.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( A  +  B )  =  C )   =>    |-  ( ph  ->  B  =  ( C  -  A ) )
 
Theoremmvrraddd 8121 Move RHS right addition to LHS. (Contributed by David A. Wheeler, 15-Oct-2018.)
 |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  A  =  ( B  +  C ) )   =>    |-  ( ph  ->  ( A  -  C )  =  B )
 
Theoremmvrladdd 8122 Move RHS left addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
 |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  A  =  ( B  +  C ) )   =>    |-  ( ph  ->  ( A  -  B )  =  C )
 
Theoremassraddsubd 8123 Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 15-Oct-2018.)
 |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  A  =  ( ( B  +  C )  -  D ) )   =>    |-  ( ph  ->  A  =  ( B  +  ( C  -  D ) ) )
 
Theoremsubaddeqd 8124 Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  ( A  +  B )  =  ( C  +  D ) )   =>    |-  ( ph  ->  ( A  -  D )  =  ( C  -  B ) )
 
Theoremaddlsub 8125 Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  =  C  <->  A  =  ( C  -  B ) ) )
 
Theoremaddrsub 8126 Right-subtraction: Subtraction of the right summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  =  C  <->  B  =  ( C  -  A ) ) )
 
Theoremsubexsub 8127 A subtraction law: Exchanging the subtrahend and the result of the subtraction. (Contributed by BJ, 6-Jun-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  =  ( C  -  B )  <->  B  =  ( C  -  A ) ) )
 
Theoremaddid0 8128 If adding a number to a another number yields the other number, the added number must be  0. This shows that  0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
 |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  <->  Y  =  0
 ) )
 
Theoremaddn0nid 8129 Adding a nonzero number to a complex number does not yield the complex number. (Contributed by AV, 17-Jan-2021.)
 |-  ( ( X  e.  CC  /\  Y  e.  CC  /\  Y  =/=  0 ) 
 ->  ( X  +  Y )  =/=  X )
 
Theorempnpncand 8130 Addition/subtraction cancellation law. (Contributed by Scott Fenton, 14-Dec-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  ( B  -  C ) )  +  ( C  -  B ) )  =  A )
 
Theoremsubeqrev 8131 Reverse the order of subtraction in an equality. (Contributed by Scott Fenton, 8-Jul-2013.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  -  B )  =  ( C  -  D )  <->  ( B  -  A )  =  ( D  -  C ) ) )
 
Theorempncan1 8132 Cancellation law for addition and subtraction with 1. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
 |-  ( A  e.  CC  ->  ( ( A  +  1 )  -  1
 )  =  A )
 
Theoremnpcan1 8133 Cancellation law for subtraction and addition with 1. (Contributed by Alexander van der Vekens, 5-Oct-2018.)
 |-  ( A  e.  CC  ->  ( ( A  -  1 )  +  1
 )  =  A )
 
Theoremsubeq0bd 8134 If two complex numbers are equal, their difference is zero. Consequence of subeq0ad 8076. Converse of subeq0d 8074. Contrapositive of subne0ad 8077. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  -  B )  =  0 )
 
Theoremrenegcld 8135 Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  -u A  e.  RR )
 
Theoremresubcld 8136 Closure law for subtraction of reals. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  -  B )  e.  RR )
 
Theoremnegf1o 8137* Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
 |-  F  =  ( x  e.  A  |->  -u x )   =>    |-  ( A  C_  RR  ->  F : A -1-1-onto-> { n  e.  RR  |  -u n  e.  A } )
 
4.3.3  Multiplication
 
Theoremkcnktkm1cn 8138 k times k minus 1 is a complex number if k is a complex number. (Contributed by Alexander van der Vekens, 11-Mar-2018.)
 |-  ( K  e.  CC  ->  ( K  x.  ( K  -  1 ) )  e.  CC )
 
Theoremmuladd 8139 Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  x.  ( C  +  D )
 )  =  ( ( ( A  x.  C )  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B ) ) ) )
 
Theoremsubdi 8140 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 18-Nov-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C ) ) )
 
Theoremsubdir 8141 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 30-Dec-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C ) ) )
 
Theoremmul02 8142 Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 10-Aug-1999.)
 |-  ( A  e.  CC  ->  ( 0  x.  A )  =  0 )
 
Theoremmul02lem2 8143 Zero times a real is zero. Although we prove it as a corollary of mul02 8142, the name is for consistency with the Metamath Proof Explorer which proves it before mul02 8142. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  ( A  e.  RR  ->  ( 0  x.  A )  =  0 )
 
Theoremmul01 8144 Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
 |-  ( A  e.  CC  ->  ( A  x.  0
 )  =  0 )
 
Theoremmul02i 8145 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   =>    |-  ( 0  x.  A )  =  0
 
Theoremmul01i 8146 Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
 |-  A  e.  CC   =>    |-  ( A  x.  0 )  =  0
 
Theoremmul02d 8147 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 0  x.  A )  =  0 )
 
Theoremmul01d 8148 Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  x.  0 )  =  0 )
 
Theoremine0 8149 The imaginary unit  _i is not zero. (Contributed by NM, 6-May-1999.)
 |-  _i  =/=  0
 
Theoremmulneg1 8150 Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  B )  =  -u ( A  x.  B ) )
 
Theoremmulneg2 8151 The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  -u B )  =  -u ( A  x.  B ) )
 
Theoremmulneg12 8152 Swap the negative sign in a product. (Contributed by NM, 30-Jul-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  B )  =  ( A  x.  -u B ) )
 
Theoremmul2neg 8153 Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 30-Jul-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  -u B )  =  ( A  x.  B ) )
 
Theoremsubmul2 8154 Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  x.  C ) )  =  ( A  +  ( B  x.  -u C ) ) )
 
Theoremmulm1 8155 Product with minus one is negative. (Contributed by NM, 16-Nov-1999.)
 |-  ( A  e.  CC  ->  ( -u 1  x.  A )  =  -u A )
 
Theoremmulsub 8156 Product of two differences. (Contributed by NM, 14-Jan-2006.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  -  B )  x.  ( C  -  D ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B ) ) ) )
 
Theoremmulsub2 8157 Swap the order of subtraction in a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  -  B )  x.  ( C  -  D ) )  =  ( ( B  -  A )  x.  ( D  -  C ) ) )
 
Theoremmulm1i 8158 Product with minus one is negative. (Contributed by NM, 31-Jul-1999.)
 |-  A  e.  CC   =>    |-  ( -u 1  x.  A )  =  -u A
 
Theoremmulneg1i 8159 Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 10-Feb-1995.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( -u A  x.  B )  =  -u ( A  x.  B )
 
Theoremmulneg2i 8160 Product with negative is negative of product. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  x.  -u B )  =  -u ( A  x.  B )
 
Theoremmul2negi 8161 Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-Feb-1995.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( -u A  x.  -u B )  =  ( A  x.  B )
 
Theoremsubdii 8162 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C ) )
 
Theoremsubdiri 8163 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 8-May-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C ) )
 
Theoremmuladdi 8164 Product of two sums. (Contributed by NM, 17-May-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   =>    |-  ( ( A  +  B )  x.  ( C  +  D )
 )  =  ( ( ( A  x.  C )  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B ) ) )
 
Theoremmulm1d 8165 Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( -u 1  x.  A )  =  -u A )
 
Theoremmulneg1d 8166 Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  (
 -u A  x.  B )  =  -u ( A  x.  B ) )
 
Theoremmulneg2d 8167 Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  x.  -u B )  =  -u ( A  x.  B ) )
 
Theoremmul2negd 8168 Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  (
 -u A  x.  -u B )  =  ( A  x.  B ) )
 
Theoremsubdid 8169 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C ) ) )
 
Theoremsubdird 8170 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C ) ) )
 
Theoremmuladdd 8171 Product of two sums. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  x.  ( C  +  D ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B ) )  +  (
 ( A  x.  D )  +  ( C  x.  B ) ) ) )
 
Theoremmulsubd 8172 Product of two differences. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  (
 ( A  -  B )  x.  ( C  -  D ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B ) )  -  (
 ( A  x.  D )  +  ( C  x.  B ) ) ) )
 
Theoremmulsubfacd 8173 Multiplication followed by the subtraction of a factor. (Contributed by Alexander van der Vekens, 28-Aug-2018.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( A  x.  B )  -  B )  =  ( ( A  -  1 )  x.  B ) )
 
4.3.4  Ordering on reals (cont.)
 
Theoremltadd2 8174 Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( C  +  A )  <  ( C  +  B ) ) )
 
Theoremltadd2i 8175 Addition to both sides of 'less than'. (Contributed by NM, 21-Jan-1997.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  ( A  <  B  <->  ( C  +  A )  <  ( C  +  B ) )
 
Theoremltadd2d 8176 Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <  B  <->  ( C  +  A )  <  ( C  +  B ) ) )
 
Theoremltadd2dd 8177 Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( C  +  A )  <  ( C  +  B ) )
 
Theoremltletrd 8178 Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  B 
 <_  C )   =>    |-  ( ph  ->  A  <  C )
 
Theoremltaddneg 8179 Adding a negative number to another number decreases it. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  0  <-> 
 ( B  +  A )  <  B ) )
 
Theoremltaddnegr 8180 Adding a negative number to another number decreases it. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  0  <-> 
 ( A  +  B )  <  B ) )
 
Theoremlelttrdi 8181 If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
 |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR ) )   &    |-  ( ph  ->  B 
 <_  C )   =>    |-  ( ph  ->  ( A  <  B  ->  A  <  C ) )
 
Theoremgt0ne0 8182 Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0
 )
 
Theoremlt0ne0 8183 A number which is less than zero is not zero. See also lt0ap0 8403 which is similar but for apartness. (Contributed by Stefan O'Rear, 13-Sep-2014.)
 |-  ( ( A  e.  RR  /\  A  <  0
 )  ->  A  =/=  0 )
 
Theoremltadd1 8184 Addition to both sides of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 12-Nov-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C ) ) )
 
Theoremleadd1 8185 Addition to both sides of 'less than or equal to'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 18-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( A  +  C ) 
 <_  ( B  +  C ) ) )
 
Theoremleadd2 8186 Addition to both sides of 'less than or equal to'. (Contributed by NM, 26-Oct-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( C  +  A ) 
 <_  ( C  +  B ) ) )
 
Theoremltsubadd 8187 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  -  B )  <  C  <->  A  <  ( C  +  B ) ) )
 
Theoremltsubadd2 8188 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  -  B )  <  C  <->  A  <  ( B  +  C ) ) )
 
Theoremlesubadd 8189 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  -  B )  <_  C  <->  A  <_  ( C  +  B ) ) )
 
Theoremlesubadd2 8190 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 10-Aug-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  -  B )  <_  C  <->  A  <_  ( B  +  C ) ) )
 
Theoremltaddsub 8191 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  +  B )  <  C  <->  A  <  ( C  -  B ) ) )
 
Theoremltaddsub2 8192 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  +  B )  <  C  <->  B  <  ( C  -  A ) ) )
 
Theoremleaddsub 8193 'Less than or equal to' relationship between addition and subtraction. (Contributed by NM, 6-Apr-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  +  B )  <_  C  <->  A  <_  ( C  -  B ) ) )
 
Theoremleaddsub2 8194 'Less than or equal to' relationship between and addition and subtraction. (Contributed by NM, 6-Apr-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  +  B )  <_  C  <->  B  <_  ( C  -  A ) ) )
 
Theoremsuble 8195 Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  -  B )  <_  C  <->  ( A  -  C )  <_  B ) )
 
Theoremlesub 8196 Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  ( B  -  C )  <->  C  <_  ( B  -  A ) ) )
 
Theoremltsub23 8197 'Less than' relationship between subtraction and addition. (Contributed by NM, 4-Oct-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  -  B )  <  C  <->  ( A  -  C )  <  B ) )
 
Theoremltsub13 8198 'Less than' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  ( B  -  C )  <->  C  <  ( B  -  A ) ) )
 
Theoremle2add 8199 Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  ( ( A  <_  C 
 /\  B  <_  D )  ->  ( A  +  B )  <_  ( C  +  D ) ) )
 
Theoremlt2add 8200 Adding both sides of two 'less than' relations. Theorem I.25 of [Apostol] p. 20. (Contributed by NM, 15-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  ( ( A  <  C 
 /\  B  <  D )  ->  ( A  +  B )  <  ( C  +  D ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >