Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axmulrcl | Unicode version |
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 7885 be used later. Instead, in most cases use remulcl 7914. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
Ref | Expression |
---|---|
axmulrcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7802 | . 2 | |
2 | elreal 7802 | . 2 | |
3 | oveq1 5872 | . . 3 | |
4 | 3 | eleq1d 2244 | . 2 |
5 | oveq2 5873 | . . 3 | |
6 | 5 | eleq1d 2244 | . 2 |
7 | mulresr 7812 | . . 3 | |
8 | mulclsr 7728 | . . . 4 | |
9 | opelreal 7801 | . . . 4 | |
10 | 8, 9 | sylibr 134 | . . 3 |
11 | 7, 10 | eqeltrd 2252 | . 2 |
12 | 1, 2, 4, 6, 11 | 2gencl 2768 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 cop 3592 (class class class)co 5865 cnr 7271 c0r 7272 cmr 7276 cr 7785 cmul 7791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-eprel 4283 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-1o 6407 df-2o 6408 df-oadd 6411 df-omul 6412 df-er 6525 df-ec 6527 df-qs 6531 df-ni 7278 df-pli 7279 df-mi 7280 df-lti 7281 df-plpq 7318 df-mpq 7319 df-enq 7321 df-nqqs 7322 df-plqqs 7323 df-mqqs 7324 df-1nqqs 7325 df-rq 7326 df-ltnqqs 7327 df-enq0 7398 df-nq0 7399 df-0nq0 7400 df-plq0 7401 df-mq0 7402 df-inp 7440 df-i1p 7441 df-iplp 7442 df-imp 7443 df-enr 7700 df-nr 7701 df-plr 7702 df-mr 7703 df-0r 7705 df-m1r 7707 df-c 7792 df-r 7796 df-mul 7798 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |