![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > remulcl | Unicode version |
Description: Alias for ax-mulrcl 7909, for naming consistency with remulcli 7970. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
remulcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulrcl 7909 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mulrcl 7909 |
This theorem is referenced by: remulcli 7970 remulcld 7987 axmulgt0 8028 msqge0 8572 mulge0 8575 recexaplem2 8608 recexap 8609 ltmul12a 8816 lemul12b 8817 mulgt1 8819 ltdivmul 8832 cju 8917 addltmul 9154 zmulcl 9305 irrmul 9646 rpmulcl 9677 ge0mulcl 9981 iccdil 9997 reexpcl 10536 reexpclzap 10539 expge0 10555 expge1 10556 expubnd 10576 bernneq 10640 faclbnd 10720 faclbnd3 10722 facavg 10725 crre 10865 remim 10868 mulreap 10872 amgm2 11126 fprodrecl 11615 fprodreclf 11621 efcllemp 11665 ege2le3 11678 ef01bndlem 11763 cos01gt0 11769 dveflem 14157 sinq12gt0 14221 tangtx 14229 coskpi 14239 relogexp 14263 logcxp 14288 rpabscxpbnd 14329 |
Copyright terms: Public domain | W3C validator |