![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > remulcl | Unicode version |
Description: Alias for ax-mulrcl 7910, for naming consistency with remulcli 7971. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
remulcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulrcl 7910 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mulrcl 7910 |
This theorem is referenced by: remulcli 7971 remulcld 7988 axmulgt0 8029 msqge0 8573 mulge0 8576 recexaplem2 8609 recexap 8610 ltmul12a 8817 lemul12b 8818 mulgt1 8820 ltdivmul 8833 cju 8918 addltmul 9155 zmulcl 9306 irrmul 9647 rpmulcl 9678 ge0mulcl 9982 iccdil 9998 reexpcl 10537 reexpclzap 10540 expge0 10556 expge1 10557 expubnd 10577 bernneq 10641 faclbnd 10721 faclbnd3 10723 facavg 10726 crre 10866 remim 10869 mulreap 10873 amgm2 11127 fprodrecl 11616 fprodreclf 11622 efcllemp 11666 ege2le3 11679 ef01bndlem 11764 cos01gt0 11770 dveflem 14190 sinq12gt0 14254 tangtx 14262 coskpi 14272 relogexp 14296 logcxp 14321 rpabscxpbnd 14362 |
Copyright terms: Public domain | W3C validator |