![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > remulcl | Unicode version |
Description: Alias for ax-mulrcl 7971, for naming consistency with remulcli 8033. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
remulcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulrcl 7971 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mulrcl 7971 |
This theorem is referenced by: remulcli 8033 remulcld 8050 axmulgt0 8091 msqge0 8635 mulge0 8638 recexaplem2 8671 recexap 8672 ltmul12a 8879 lemul12b 8880 mulgt1 8882 ltdivmul 8895 cju 8980 addltmul 9219 zmulcl 9370 irrmul 9712 rpmulcl 9744 ge0mulcl 10048 iccdil 10064 reexpcl 10627 reexpclzap 10630 expge0 10646 expge1 10647 expubnd 10667 bernneq 10731 faclbnd 10812 faclbnd3 10814 facavg 10817 crre 11001 remim 11004 mulreap 11008 amgm2 11262 fprodrecl 11751 fprodreclf 11757 efcllemp 11801 ege2le3 11814 ef01bndlem 11899 cos01gt0 11906 4sqlem11 12539 dveflem 14872 sinq12gt0 14965 tangtx 14973 coskpi 14983 relogexp 15007 logcxp 15032 rpabscxpbnd 15073 |
Copyright terms: Public domain | W3C validator |