![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > remulcl | Unicode version |
Description: Alias for ax-mulrcl 7973, for naming consistency with remulcli 8035. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
remulcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulrcl 7973 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mulrcl 7973 |
This theorem is referenced by: remulcli 8035 remulcld 8052 axmulgt0 8093 msqge0 8637 mulge0 8640 recexaplem2 8673 recexap 8674 ltmul12a 8881 lemul12b 8882 mulgt1 8884 ltdivmul 8897 cju 8982 addltmul 9222 zmulcl 9373 irrmul 9715 rpmulcl 9747 ge0mulcl 10051 iccdil 10067 reexpcl 10630 reexpclzap 10633 expge0 10649 expge1 10650 expubnd 10670 bernneq 10734 faclbnd 10815 faclbnd3 10817 facavg 10820 crre 11004 remim 11007 mulreap 11011 amgm2 11265 fprodrecl 11754 fprodreclf 11760 efcllemp 11804 ege2le3 11817 ef01bndlem 11902 cos01gt0 11909 4sqlem11 12542 dveflem 14905 sinq12gt0 15006 tangtx 15014 coskpi 15024 relogexp 15048 logcxp 15073 rpabscxpbnd 15114 |
Copyright terms: Public domain | W3C validator |