![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > remulcl | Unicode version |
Description: Alias for ax-mulrcl 7913, for naming consistency with remulcli 7974. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
remulcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulrcl 7913 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mulrcl 7913 |
This theorem is referenced by: remulcli 7974 remulcld 7991 axmulgt0 8032 msqge0 8576 mulge0 8579 recexaplem2 8612 recexap 8613 ltmul12a 8820 lemul12b 8821 mulgt1 8823 ltdivmul 8836 cju 8921 addltmul 9158 zmulcl 9309 irrmul 9650 rpmulcl 9681 ge0mulcl 9985 iccdil 10001 reexpcl 10540 reexpclzap 10543 expge0 10559 expge1 10560 expubnd 10580 bernneq 10644 faclbnd 10724 faclbnd3 10726 facavg 10729 crre 10869 remim 10872 mulreap 10876 amgm2 11130 fprodrecl 11619 fprodreclf 11625 efcllemp 11669 ege2le3 11682 ef01bndlem 11767 cos01gt0 11773 dveflem 14348 sinq12gt0 14412 tangtx 14420 coskpi 14430 relogexp 14454 logcxp 14479 rpabscxpbnd 14520 |
Copyright terms: Public domain | W3C validator |