| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ord | Unicode version | ||
| Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| ord.1 | 
 | 
| Ref | Expression | 
|---|---|
| ord | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ord.1 | 
. 2
 | |
| 2 | pm2.53 723 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm2.8 811 orcanai 929 ax12 1526 swopo 4341 sotritrieq 4360 suc11g 4593 ordsoexmid 4598 nnsuc 4652 sotri2 5067 nnsucsssuc 6550 nntri2 6552 nntri1 6554 nnsseleq 6559 djulclb 7121 0ct 7173 exmidomniim 7207 omniwomnimkv 7233 elni2 7381 nlt1pig 7408 nngt1ne1 9025 zleloe 9373 zapne 9400 nneo 9429 zeo2 9432 fzocatel 10275 seqf1oglem1 10611 seqf1oglem2 10612 dfphi2 12388 prmdiv 12403 odzdvds 12414 pc2dvds 12499 fldivp1 12517 pcfac 12519 1arith 12536 4sqlem10 12556 plyaddlem1 14983 plymullem1 14984 gausslemma2dlem4 15305 lgseisenlem1 15311 bj-peano4 15601 | 
| Copyright terms: Public domain | W3C validator |