| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ord | Unicode version | ||
| Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ord.1 |
|
| Ref | Expression |
|---|---|
| ord |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord.1 |
. 2
| |
| 2 | pm2.53 727 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.8 815 orcanai 933 ax12 1558 swopo 4397 sotritrieq 4416 suc11g 4649 ordsoexmid 4654 nnsuc 4708 sotri2 5126 nnsucsssuc 6638 nntri2 6640 nntri1 6642 nnsseleq 6647 djulclb 7222 0ct 7274 exmidomniim 7308 omniwomnimkv 7334 elni2 7501 nlt1pig 7528 nngt1ne1 9145 zleloe 9493 zapne 9521 nneo 9550 zeo2 9553 fzocatel 10405 seqf1oglem1 10741 seqf1oglem2 10742 bitsinv1lem 12472 dfphi2 12742 prmdiv 12757 odzdvds 12768 pc2dvds 12853 fldivp1 12871 pcfac 12873 1arith 12890 4sqlem10 12910 plyaddlem1 15421 plymullem1 15422 gausslemma2dlem4 15743 lgseisenlem1 15749 bj-peano4 16318 |
| Copyright terms: Public domain | W3C validator |