| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ord | Unicode version | ||
| Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ord.1 |
|
| Ref | Expression |
|---|---|
| ord |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord.1 |
. 2
| |
| 2 | pm2.53 724 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.8 812 orcanai 930 ax12 1535 swopo 4354 sotritrieq 4373 suc11g 4606 ordsoexmid 4611 nnsuc 4665 sotri2 5081 nnsucsssuc 6580 nntri2 6582 nntri1 6584 nnsseleq 6589 djulclb 7159 0ct 7211 exmidomniim 7245 omniwomnimkv 7271 elni2 7429 nlt1pig 7456 nngt1ne1 9073 zleloe 9421 zapne 9449 nneo 9478 zeo2 9481 fzocatel 10330 seqf1oglem1 10666 seqf1oglem2 10667 bitsinv1lem 12305 dfphi2 12575 prmdiv 12590 odzdvds 12601 pc2dvds 12686 fldivp1 12704 pcfac 12706 1arith 12723 4sqlem10 12743 plyaddlem1 15252 plymullem1 15253 gausslemma2dlem4 15574 lgseisenlem1 15580 bj-peano4 15928 |
| Copyright terms: Public domain | W3C validator |