ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ord Unicode version

Theorem ord 714
Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypothesis
Ref Expression
ord.1  |-  ( ph  ->  ( ps  \/  ch ) )
Assertion
Ref Expression
ord  |-  ( ph  ->  ( -.  ps  ->  ch ) )

Proof of Theorem ord
StepHypRef Expression
1 ord.1 . 2  |-  ( ph  ->  ( ps  \/  ch ) )
2 pm2.53 712 . 2  |-  ( ( ps  \/  ch )  ->  ( -.  ps  ->  ch ) )
31, 2syl 14 1  |-  ( ph  ->  ( -.  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm2.8  800  orcanai  918  ax12  1500  swopo  4284  sotritrieq  4303  suc11g  4534  ordsoexmid  4539  nnsuc  4593  sotri2  5001  nnsucsssuc  6460  nntri2  6462  nntri1  6464  nnsseleq  6469  djulclb  7020  0ct  7072  exmidomniim  7105  omniwomnimkv  7131  elni2  7255  nlt1pig  7282  nngt1ne1  8892  zleloe  9238  zapne  9265  nneo  9294  zeo2  9297  fzocatel  10134  dfphi2  12152  prmdiv  12167  odzdvds  12177  pc2dvds  12261  fldivp1  12278  pcfac  12280  1arith  12297  4sqlem10  12317  bj-peano4  13837
  Copyright terms: Public domain W3C validator