ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbequid Unicode version

Theorem hbequid 1501
Description: Bound-variable hypothesis builder for  x  =  x. This theorem tells us that any variable, including  x, is effectively not free in  x  =  x, even though  x is technically free according to the traditional definition of free variable.

The proof uses only ax-8 1492 and ax-i12 1495 on top of (the FOL analogue of) modal logic KT. This shows that this can be proved without ax-i9 1518, even though Theorem equid 1689 cannot. A shorter proof using ax-i9 1518 is obtainable from equid 1689 and hbth 1451. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 23-Mar-2014.)

Assertion
Ref Expression
hbequid  |-  ( x  =  x  ->  A. y  x  =  x )

Proof of Theorem hbequid
StepHypRef Expression
1 ax12or 1496 . 2  |-  ( A. y  y  =  x  \/  ( A. y  y  =  x  \/  A. y ( x  =  x  ->  A. y  x  =  x )
) )
2 ax-8 1492 . . . . . 6  |-  ( y  =  x  ->  (
y  =  x  ->  x  =  x )
)
32pm2.43i 49 . . . . 5  |-  ( y  =  x  ->  x  =  x )
43alimi 1443 . . . 4  |-  ( A. y  y  =  x  ->  A. y  x  =  x )
54a1d 22 . . 3  |-  ( A. y  y  =  x  ->  ( x  =  x  ->  A. y  x  =  x ) )
6 ax-4 1498 . . . 4  |-  ( A. y ( x  =  x  ->  A. y  x  =  x )  ->  ( x  =  x  ->  A. y  x  =  x ) )
75, 6jaoi 706 . . 3  |-  ( ( A. y  y  =  x  \/  A. y
( x  =  x  ->  A. y  x  =  x ) )  -> 
( x  =  x  ->  A. y  x  =  x ) )
85, 7jaoi 706 . 2  |-  ( ( A. y  y  =  x  \/  ( A. y  y  =  x  \/  A. y ( x  =  x  ->  A. y  x  =  x )
) )  ->  (
x  =  x  ->  A. y  x  =  x ) )
91, 8ax-mp 5 1  |-  ( x  =  x  ->  A. y  x  =  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698   A.wal 1341    = wceq 1343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-gen 1437  ax-8 1492  ax-i12 1495  ax-4 1498
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  equveli  1747
  Copyright terms: Public domain W3C validator