ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axc4i Unicode version

Theorem axc4i 1566
Description: Inference version of 19.21 1607. (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
axc4i.1  |-  ( A. x ph  ->  ps )
Assertion
Ref Expression
axc4i  |-  ( A. x ph  ->  A. x ps )

Proof of Theorem axc4i
StepHypRef Expression
1 nfa1 1565 . 2  |-  F/ x A. x ph
2 axc4i.1 . 2  |-  ( A. x ph  ->  ps )
31, 2alrimi 1546 1  |-  ( A. x ph  ->  A. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  nfabdw  2369
  Copyright terms: Public domain W3C validator