ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axc4i Unicode version

Theorem axc4i 1535
Description: Inference version of 19.21 1576. (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
axc4i.1  |-  ( A. x ph  ->  ps )
Assertion
Ref Expression
axc4i  |-  ( A. x ph  ->  A. x ps )

Proof of Theorem axc4i
StepHypRef Expression
1 nfa1 1534 . 2  |-  F/ x A. x ph
2 axc4i.1 . 2  |-  ( A. x ph  ->  ps )
31, 2alrimi 1515 1  |-  ( A. x ph  ->  A. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  nfabdw  2331
  Copyright terms: Public domain W3C validator