ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfa1 Unicode version

Theorem nfa1 1587
Description:  x is not free in  A. x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfa1  |-  F/ x A. x ph

Proof of Theorem nfa1
StepHypRef Expression
1 hba1 1586 . 2  |-  ( A. x ph  ->  A. x A. x ph )
21nfi 1508 1  |-  F/ x A. x ph
Colors of variables: wff set class
Syntax hints:   A.wal 1393   F/wnf 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507
This theorem is referenced by:  axc4i  1588  nfnf1  1590  nfa2  1625  nfia1  1626  alexdc  1665  nf2  1714  cbv1h  1792  sbf2  1824  sb4or  1879  nfsbxy  1993  nfsbxyt  1994  sbcomxyyz  2023  sbalyz  2050  dvelimALT  2061  hbe1a  2074  nfeu1  2088  moim  2142  euexex  2163  nfaba1  2378  nfabdw  2391  nfra1  2561  ceqsalg  2828  elrab3t  2958  mo2icl  2982  csbie2t  3173  sbcnestgf  3176  dfss4st  3437  dfnfc2  3905  mpteq12f  4163  copsex2t  4330  ssopab2  4363  alxfr  4551  eunex  4652  mosubopt  4783  fv3  5649  fvmptt  5725  fnoprabg  6104  fiintim  7089  bj-exlimmp  16091  bdsepnft  16208  setindft  16286  strcollnft  16305
  Copyright terms: Public domain W3C validator