ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfa1 Unicode version

Theorem nfa1 1541
Description:  x is not free in  A. x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfa1  |-  F/ x A. x ph

Proof of Theorem nfa1
StepHypRef Expression
1 hba1 1540 . 2  |-  ( A. x ph  ->  A. x A. x ph )
21nfi 1462 1  |-  F/ x A. x ph
Colors of variables: wff set class
Syntax hints:   A.wal 1351   F/wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1449  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  axc4i  1542  nfnf1  1544  nfa2  1579  nfia1  1580  alexdc  1619  nf2  1668  cbv1h  1746  sbf2  1778  sb4or  1833  nfsbxy  1942  nfsbxyt  1943  sbcomxyyz  1972  sbalyz  1999  dvelimALT  2010  hbe1a  2023  nfeu1  2037  moim  2090  euexex  2111  nfaba1  2325  nfabdw  2338  nfra1  2508  ceqsalg  2767  elrab3t  2894  mo2icl  2918  csbie2t  3107  sbcnestgf  3110  dfss4st  3370  dfnfc2  3829  mpteq12f  4085  copsex2t  4247  ssopab2  4277  alxfr  4463  eunex  4562  mosubopt  4693  fv3  5540  fvmptt  5609  fnoprabg  5978  fiintim  6930  bj-exlimmp  14606  bdsepnft  14724  setindft  14802  strcollnft  14821
  Copyright terms: Public domain W3C validator