ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21 Unicode version

Theorem 19.21 1545
Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as " x is not free in  ph." (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.21.1  |-  F/ x ph
Assertion
Ref Expression
19.21  |-  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) )

Proof of Theorem 19.21
StepHypRef Expression
1 19.21.1 . 2  |-  F/ x ph
2 19.21t 1544 . 2  |-  ( F/ x ph  ->  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) ) )
31, 2ax-mp 7 1  |-  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1312   F/wnf 1419
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-4 1470  ax-ial 1497  ax-i5r 1498
This theorem depends on definitions:  df-bi 116  df-nf 1420
This theorem is referenced by:  stdpc5  1546  19.21-2  1628  19.32dc  1640  cbv1  1705  eu2  2019  mo3h  2028  moanim  2049  r2alf  2426
  Copyright terms: Public domain W3C validator